出産前後の痔にはご注意!

フィボナッチ数列ってなんですか?

A 回答 (3件)

    • good
    • 0
    • good
    • 0

a[1]=a[2]=a, a[n+2]=a[n+1]+a[n].


で定義される数列{a[n]}のことです。
一般項は、
a[n]=(1/√5)*{α^n - β^n}.
となります。ただし、α=(1+√5)/2, β=(1-√5)/2. です。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q計算問題(中学校レベル)教えてください

●x=-2+√3のとき、x² +4x+4の値を求めよ

答えは3になるはずなのですが、何を間違えているのか代入して計算しても3になりません。

おわかりの方いらっしゃれば、途中式を詳しく教えて頂きたいです。

Aベストアンサー

そのまま代入すると計算が煩雑だからチョコっと工夫する

x² +4x+4=(x+2)²と変形する

(x+2)²のxに-2+√3を代入すると
(-2+√3+2)²=(√3)²=3

Q3^m - 1 (mが奇数) を素因数分解した時の2の指数は何かという問題について 回答はもっと上手

3^m - 1 (mが奇数) を素因数分解した時の2の指数は何かという問題について

回答はもっと上手いやり方で9÷8=1…1 を使ってやっていましたが思いつかなかったので数学的帰納法でやりました
果たして証明できているか不安です
ご確認お願いします

①m=1のとき 3^1 -1 =2
より素因数分解した時の2の指数は1である

②m=kのとき(kは奇数)
3^k -1= 2×(奇数A) とすると
3^(k+2) -1= [2×(奇数A) +1]×9 -1
=2×[ (奇数A)×9 -8]

となり[]内の値は奇数であるからm=k+2の時も素因数分解した時の2の指数は1である

①②より全ての奇数の自然数mについて3^m -1を素因数分解した時の2の指数は1である

Aベストアンサー

x^n -1=(x-1){x^(n-1) +x^(n-2) +… +x^2 +x +1}
という展開式に当てはめれば、

3^m -1
=(3-1){3^(m-1) +3^(m-2) +… +3^2 +3 +1}
=2{3^(m-1) +3^(m-2) +… +3^2 +3 +1}
とできる。

3の累乗は常に奇数であり、
3^0 の項から 3^(m-1) の項までm個(奇数個)あるので
{}内は奇数を奇数個足し合わせになることから、奇数。

よって、mが奇数のとき 3^m -1 は、2×奇数 で表される。
したがって、2の指数は1だといえる。


----------
奇数 +偶数 =奇数 ということを
きちんと説明できていれば、証明できていると言えるでしょうね。

Q数学の実数の問題です。

こんばんは、ただいま数学の先生からの難題に頭を抱えています。
その答えを見つけるにあたり下記の解、またその証明方法が知りたいです。
中学生でもわかる証明法だといいです。

[2,3]と[2,10]において、どちらの区間がより多い実数を有しているか。

どちらも無限に続くので参っています。
ヒントだけでもよろしいので教えて下さいませんか。

*自分なりに一応考えてみました。
[2,3]の実数をx(∞)とする(仮定)       ・・・①
[2,10]の実数は[2,3]の8倍なので8x      ・・・②
①と②より、  x<8x
故に [2,3]<[2,10]
はじめはこれが正解だと思っていたのですが、見直したところ、どうにも安直な証明法なのでここに質問することにしました。

Aベストアンサー

濃度という意味で言えば同じですね。

小数点以下の桁数が限られていればあなたが考えた通りなのですが、
実際には桁数も無限なので、無限の実数を含むことになります。
無限なのだから当然個数で比較することはできません。
ですので、別の考え方が必要でしょう。


区間 [2,3] から、実数xを一つ取ります。
ここで変換式 8(x-2)+2 を適用すると
どんなxに対しても区間 [2,10] の実数になります。

逆に、区間 [2,10] から、実数yを一つ取り
変換式 (1/8)(y-2)+2 を適用すると
どんなyに対しても区間 [2,3] の実数になります。

つまり、二つの区間内の実数が一対一で変換できるので、
個数は同じだけある。
というのが答えになります。

大学数学ではこれを濃度が同じとしています。
イメージとしては「長さが違ったとしても同じ一本の線(の区間)」
なので一対一に対応できるのは当たり前、といったところでしょうか。

Q算数です。AB間の距離を求める問題

●ある人がA地点から峠を通ってB地点まで行ったあと、A地点へ戻った。行きも帰りも4時間ずつかかった。峠を登る時は時速2キロメートルで歩き、下るときは時速6キロメートルで歩いた。AB間の距離は?

速さ・時間・距離を求める公式は押さえています。

おわかりの方いらっしゃればご教授お願いいたします。

Aベストアンサー

Aから峠までを x km 峠からBまでを y km とすると、求めるAB間は x+y である。
行き  x/2 + y/6 = 4 →分母を払って(両辺に6をかけて) 3x + y =24 ①
帰り x/6 + y/2 = 4 →分母を払って(両辺に6をかけて) x +3y =24 ②
①+②
4x + 4y =48
x+y=12
答 12 km

Q遠心力はなぜ見せかけの力と呼ばれているのですか?

等速円運動をしている物体は、中心方向にrω^2の加速度を持ち、これに質量mをかけた力Fを向心力といいますが、一方でなぜ遠心力は慣性系で見せかけの力といわれているのでしょうか?個人的には、遠心力は見せかけの力などではなく、向心力との力のつり合いや、向心力の反作用のような気がするのですが。また、遠心力が見せかけの力なのであれば、向心力も見せかけの力であると考えますが、向心力はそういう定義ではありませんよね。遠心力は実際に、水の入ったバケツを振り回した際、水がこぼれなくなる力であり、スクーターなどの遠心クラッチや遠心プーリなどは、この原理を応用して、クチッチや、プーリの開閉をしてギア比の調整をしています。

お教えください。以上です。

Aベストアンサー

例え話、置き換えての説明が理解できないと理解できませんが。
実験、縦横10Cm、20cmの板20cm側に低い壁を作り、板の中央にさいころを置きます。
その状態で板全体を等速で引っ張ります(慣性で等速直線運動の再現?)。
その状態で、板を急に手前(引っ張る方向とは直角方向)に引っ張ります(向心力という加速度?)。
サイコロはどうなるか?、自身の慣性で板上でその場にとどまろうとするが板は手前に移動する結果、向こう側の壁にぶち当たる。
でも、板だけを見るのではなく、周囲の環境も含めて観察すれば、板は引っ張られる方向に動きつつ手前に移動します、つまり斜めに移動、この瞬間が連続すると軌跡が円運動になります。
その結果さいころは向こう側の壁に押し付けられ続けます。
最初のさいころの動き、板の上だけ見ているとサイコロが向こう側に動いたと見えます、でもサイコロには何も力は加わっていません、力が加わり動いたのは板です。
全体を見ると?、透明の板でしたが方眼紙のようなメモリがあると、サイコロは当初から引っ張られている方向には移動していますが、こちら側にに向こう側にも、壁に当たるまでは移動していません。
でも確かに壁に当たり、何等かの力?は当然感じます、これが遠心力。
反対方向に進む電車が同時に停車していて片方が動き出したとき、一瞬はどちらが動いたのかは判断できないのと同じ。
つまり物体自身の慣性により動こうとしないのに相手が動く、相対的に物体自身が動いたよう感じる。
等速直線運動はどちらも同じ条件のため、停止状態と等価、ゆえに、相対的に感じる遠心力は向心力と正反対になる。

例え話、置き換えての説明が理解できないと理解できませんが。
実験、縦横10Cm、20cmの板20cm側に低い壁を作り、板の中央にさいころを置きます。
その状態で板全体を等速で引っ張ります(慣性で等速直線運動の再現?)。
その状態で、板を急に手前(引っ張る方向とは直角方向)に引っ張ります(向心力という加速度?)。
サイコロはどうなるか?、自身の慣性で板上でその場にとどまろうとするが板は手前に移動する結果、向こう側の壁にぶち当たる。
でも、板だけを見るのではなく、周囲の環境も含めて観...続きを読む

Q√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-6 この計算のどこがおかしいですか?

今高校数学2 複素数と二次方程式 の範囲を勉強しているのですが、
√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6  
この式のどこが間違っているのか分かりません!教えて下さい!
ご回答宜しくお願いします!

Aベストアンサー

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」とがOKなことと
「負の数の根号」×「負の数の根号」の“計算”が
今まで通りOKなことは違うということです。

つまり、根号の中身が負のときには
√a × √b = √ab 
とは計算してはいけないということ。

数学Ⅰの教科書を見てください。
性質★ a>0 b>0 のとき √a × √b = √ab
と書いてありますよね!

√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6 

の計算式では左から2つめの=が誤っていて、それ以外の=は正しいです。
--------------------------------------------------

No4の回答について

> √(ー2)(ー3)=√(ー1)√(2)√(ー1)√(3)=√(ー1)²√2√3=√2√3=√6 だから。 ☆

2つ目の=と3つ目の=が計算の性質★に違反しています。

>この部分を√(ー1)√(2)√(ー1)√(3)=i√(2)i√(3)としてはダメな理由を教えて頂けませんか?
ダメでなく、正しいです。(これは自信を持ってください!)
でも数式☆では2つめの=がNGだから、√6とは等しくありませんね!

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」と...続きを読む

Qなぜ1m+1m=2mなのですか? そう定義したからですか?

なぜ1m+1m=2mなのですか?
そう定義したからですか?

Aベストアンサー

どうも、先の回答は、「有名・著名な原理や法則といえども証明できるものではない」という狭い意味にとらえられてしまうかもしれませんが、文意は「有名・著名なものからごく身近なものまで、すべて原理・法則というものは証明の対象ではない」というものです。

実際、エネルギと質量の交換が行われる局面ではエネルギ保存則、質量保存の法則はそれぞれ単独では成り立たず双方を考慮した修正が行われます。
万有引力の法則も、引力が大きくなると修正(誤差を許容できなくなる)が必要です。

3時間前に時速4kmで出発した弟を、お兄さんが時速16kmの自転車で追いかけるときの追いつく時刻についても、単純な引き算・割り算「ex4×3÷(16-4)」だけでなく、観測者がだれなのかといった視点も含め一般相対論による修正が厳密には必要でしょう。


付言するならば、「算数」という教科は、この世の「自然に受け入れられている身の回りの法則・原理について学ぶ(つべこべ言わずに覚える)教科」であり、「数学」はこの世の法則にとどまらず、厳密な意味での「数の体系」についても学ぶ(厳密性を追求し、証明を求める)教科です。

どうも、先の回答は、「有名・著名な原理や法則といえども証明できるものではない」という狭い意味にとらえられてしまうかもしれませんが、文意は「有名・著名なものからごく身近なものまで、すべて原理・法則というものは証明の対象ではない」というものです。

実際、エネルギと質量の交換が行われる局面ではエネルギ保存則、質量保存の法則はそれぞれ単独では成り立たず双方を考慮した修正が行われます。
万有引力の法則も、引力が大きくなると修正(誤差を許容できなくなる)が必要です。

3時間前に時速4k...続きを読む

Q次の数を大小順に並べろ (1)2^36,3^24,6^12 (2)3の4乗根、5の6乗根、7の7乗根

次の数を大小順に並べろ
(1)2^36,3^24,6^12
(2)3の4乗根、5の6乗根、7の7乗根
(3)log3の2、log7の4、2/3
途中式をわかりやすく教えていただけると嬉しいです

Aベストアンサー

(1) 同じべき乗の形に統一すればよい。
  2^36 = 2^(3*12) = (2^3)^12 = 8^12
  3^24 = 3^(2*12) = (3^2)^12 = 9^12
  6^12
これで比べられますね。
  6^12 < 2^36 < 3^24

(2) 同じようにやればよい。
  3^(1/4) = 3^(21/84) = (3^3)^(7/84) = 27^(7/84) = (3^7)^(3/84) = 2187^(3/84)
  5^(1/6) = 5^(14/84) = (5^2)^(7/84) = 25^(7/84)
  7^(1/7) = 7^(12/84) = (7^4)^(3/84) = 2401^(3/84)
よって
  5^(1/6) < 3^(1/4) < 7^(1/7)

(3) これは2つずつ比をとってみればよいかな。

 log[3]2 = log(2)/log(3) = x
 log[7]4 = log(4)/log(7) = 2log(2)/log(7) = y
とおけば
 x/y = log(7) / 2log(3) = log(7) / log(9) < 1

 2/3=z とおくと
 x/z = (3/2)log(2)/log(3) = 3log(2) / 2log(3) = log(8) / log(9) < 1
 y/z = (3/2)log(4)/log(7) = 3log(4) / 2log(7) = log(64) / log(49) > 1

よって
 x<z<y → log[3]2 < 2/3 < log[7]4

(1) 同じべき乗の形に統一すればよい。
  2^36 = 2^(3*12) = (2^3)^12 = 8^12
  3^24 = 3^(2*12) = (3^2)^12 = 9^12
  6^12
これで比べられますね。
  6^12 < 2^36 < 3^24

(2) 同じようにやればよい。
  3^(1/4) = 3^(21/84) = (3^3)^(7/84) = 27^(7/84) = (3^7)^(3/84) = 2187^(3/84)
  5^(1/6) = 5^(14/84) = (5^2)^(7/84) = 25^(7/84)
  7^(1/7) = 7^(12/84) = (7^4)^(3/84) = 2401^(3/84)
よって
  5^(1/6) < 3^(1/4) < 7^(1/7)

(3) これは2つずつ比をとってみればよいかな。

 log[3]2 = ...続きを読む

Q数学のイコールの揃え方 中学三年生です。数学の先生に、 ○=△=□ と ○ =△ =□ という書き方

数学のイコールの揃え方
中学三年生です。数学の先生に、
○=△=□ 

 ○
=△
=□
という書き方は正解で、
○=△
 =□
という書き方をしてはいけないと教わりました。
これは本当でしょうか?今まで聞いたことのないことなのでよくわかりません。
また、その理由も教えてください。
分かりにくくすみません。よろしくお願いします。

Aベストアンサー

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認めません。
表面的でいいですから、間違いを受け入れましょう。
別の先生に言ったところで、その先生のプライドを傷つけて、目をつけられるだけです。

数学は、「正しいこと」が理解できていれば十分です。
テストの点数なんてどうでもいいじゃないですか。
数学なんですから、正しければそれでいいんです。
テストの紙に「×」って書いてあっても、正しいものは正しいです。
入試とかじゃないのならば、それでいいじゃないですか。

「大嫌いなあの先生に一泡吹かせる」
が目的ならば、追求すればいいですが、
「何が正しいのかを知りたい」
のであれば、あなたが100%正しいので、安心して、次の問題に取り組んでください。

ただ、「慣例」というものがあって、
「数学的には完全に正しいけど、記述方法として好ましくない」
というものはあります。

たとえば、文章題で、回答のはじめに
「"+"記号とは引き算を意味すると定義する」
として、「+」記号を引き算の記号「ー」のように使うことは数学的には
完全に正しいですが、好ましくありません。
ある程度、
「みんなで同じ定義や記述方法をそろえておく」
というのは、コミュニケーションの上では結構重要です。
みんなバラバラの定義を使ったら大変ですよね。

○=△
 =□
確かにこのような書き方は、
「3つの式が等しい」
ことを意味するよりも、
「○を変形したら□になりました」
とか
「○にある変数を代入したら□になりました」
みたいな印象を与えます。
そういう意味で、
「正しいけれど、慣例に従ったほうが良い」
として間違いにしたのならば、少し理解できます。
が、やはり数学的には正しいので、数学の問題である以上
「間違い」には出来ないと思います。

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認...続きを読む

Qn進法の計算が分かりません。_(._.)_ 例えば、1011(2)+11101(2) の答えが、、、

n進法の計算が分かりません。_(._.)_
例えば、1011(2)+11101(2)
の答えが、、、、どうやってやればいいんだ?
確かにそのまま足したら10進法ニナルケド、 是非とも教えてください

Aベストアンサー

そろばんは、習ったことがありますか?
2進そろばんで考えると、分かりやすいです。

各位に玉が1個だけあり、その玉を上下に動かします。

その位に1を足すときは玉を上げます。
すでに上がっているときは、その玉を下げて1つ大きい位の玉を上げます。

普通のそろばんの経験があれば、これで仕組みが分かると思います。
次のリンクが参考になると思います。

http://b-log-b-log.blog.so-net.ne.jp/2013-09-08

2進そろばんで検索するとiPhoneのアプリも見つかるのですが、もうダウンロードはできないようです。


このカテゴリの人気Q&Aランキング