ᅫ�^ᅫ�^ᅫ�^ᅫ�zᅫ�^ᅫ�^ᅫ�^ᅫ�bᅫ�^ᅫ�^ᅫ�^ᅫ�gᅫ�^ᅫ�^ᅫ�^ᅫ�Tᅫ�^ᅫ�^ᅫ�^��ᅫ�\ᅫ�^ᅫ�\ᅫ�^ᅫ�^ᅫ�^ᅫ�h
の検索結果 (10,000件 1〜 20 件を表示)
寝たきりになってしまった愛犬
…愛犬のM・ダックスが脳腫瘍になり、手の施しようがなく自宅で介護しております。 長くて2ヶ月・・突然の余命宣告から1ヶ月半・・ 衰弱してはいますが食事も何とか食べ、薬も嫌がらず...…
高校の微分の問題で、g(x)=x^3-3bx+3b^2のグラフはなぜ画像のようになるのですか? h(
…高校の微分の問題で、g(x)=x^3-3bx+3b^2のグラフはなぜ画像のようになるのですか? h(x)=x^3-x^2+bで、αとβは2つのグラフの交点で、それぞれb、2bです。…
2024.10.8 12:12に質問した 2024.10.8 13:49に頂いた解答の 2024.1
…2024.10.8 12:12に質問した 2024.10.8 13:49に頂いた解答の 2024.10.9 06:06の「質問者さんからお礼」 に書いた以下の文章について、質問がございます。 (テイラー展開する式を g(z)=Σ[k=0〜+∞] b(...…
g(z)=tan(z)/(z-π/2)^(n+1)のローラン展開 を導く為に、 a(n) =res(
…g(z)=tan(z)/(z-π/2)^(n+1)のローラン展開 を導く為に、 a(n) =res(g(z),π/2) =res(tan(z)/(z-π/2)^(n+1),π/2) ={1/(2πi)}∫{|z-π/2|=r}tan(z)/(z-π/2)^(n+1)dz などの積分が難しくなる積分公式を使わずに、 a(n) ={1/(n+1)!}lim...…
今更で申し訳ないのですが、疑問が2つあります。 ①g(z)=tan(z)(z-π/2)でz→π/2(
…今更で申し訳ないのですが、疑問が2つあります。 ①g(z)=tan(z)(z-π/2)でz→π/2(z=π/2)の時は、g(z)の式は収束する為、コーシーの積分定理によってa(n)は0になると思ったのですが、なぜ画像のよ...…
(a、bは定数) z、x、yという変数があったときz=ax+byという式があったら微分形は(δz/δ
…(a、bは定数) z、x、yという変数があったときz=ax+byという式があったら微分形は(δz/δx)y=a、(δz/δy)x=b でいいですか? 全微分形式で書くとdz= (δz/δx)y.dx+ (δz/δy)xdy ですか? 全微分形式と微分...…
t=v0/L y=1/2gt^2にtを代入 y=1/2g (v0)^2/L^2 このyがhより小さく
…t=v0/L y=1/2gt^2にtを代入 y=1/2g (v0)^2/L^2 このyがhより小さくなれば良いので v0…
a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)t
…a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)tan(z)] に含まれるg(z)=(z-π/2)tan(z)の留数(residue)を求めるために、 g(z)をテイラー展開します。 展開した式から(z-π/2)の係数を取り出します。 取り出し...…
こちらの2024.08.20 18:17と2024.08.31 00:04の2つのf(z)=tan(
…こちらの2024.08.20 18:17と2024.08.31 00:04の2つのf(z)=tan(z)のローラン展開の式の導き方の質問に関して、 頂いた解答を踏まえて質問したい事がございます。 https://oshiete.goo.ne.jp/qa/13896555.html https://o...…
こちらの2024.08.20 18:17と2024.08.31 00:04の2つのf(z)=tan(
…こちらの2024.08.20 18:17と2024.08.31 00:04の2つのf(z)=tan(z)のローラン展開の式の導き方の質問に関して、 頂いた解答を踏まえて質問したい事がございます。 https://oshiete.goo.ne.jp/qa/13896555.html https://o...…
画像において、質問がございます。 ①,何のためにg(z)=(z-π/2)tan(z)を作ったのでしょ
…画像において、質問がございます。 ①,何のためにg(z)=(z-π/2)tan(z)を作ったのでしょうか? g(z)=tan(z)/(z-1/2)^(n+1)ではなかったのでしょうか? ②,なぜ、g(z)=(z-π/2)tan(z)ではなく、g(z)=(z-π/2)tan(z)...…
「tan(z)の特異点z=π/2は1位の極なので g(z)=tan(z)/(z-π/2)^(n+1)
…「tan(z)の特異点z=π/2は1位の極なので g(z)=tan(z)/(z-π/2)^(n+1)は(n+2)位の極となります。 よって a(n) ={1/(2πi)}∫_{C}{tan(z)/(z-π/2)^(n+1)}dz ={1/(2πi)}2πires(tan(z)/(z-π/2)^(n+1),π/2) ={1/(n+1)!}lim_{z→π/2}(d/dz)^...…
2024.5.8 08:24の質問の 2024.5.11 16:58の解答の 「f(z)がz=aでj
…2024.5.8 08:24の質問の 2024.5.11 16:58の解答の 「f(z)がz=aでj位の極をもつとき f(z)=Σ{n=-j~∞}a(n)(z-a)^n g0(z)=f(z)(z-a)^j a(n)={1/(n+j)!}lim[z->a](d/dz)^(n+j)f(z)(z-a)^j a(n)=res(f(z)/(z-a)^(n+1),a) gn(z)=f(z)/(z-a)^(n+1) と...…
波動方程式について。 微分可能な関数f,gを用いて、f(z-vt)、g(z+vt)を写真の波動方程式
…波動方程式について。 微分可能な関数f,gを用いて、f(z-vt)、g(z+vt)を写真の波動方程式に代入して波動が進む速さvを求めたいのですが、どのように微分したらいいか教えてほしいです。…
過去に 「ii) f(z)=1/(z^2-1) r>2 C={z||z-1|=r} の時は ローラン
…過去に 「ii) f(z)=1/(z^2-1) r>2 C={z||z-1|=r} の時は ローラン展開は f(z)=Σ_{n=-∞~∞}a(n)(z-1)^n a(n)={1/(2πi)}∫_{C}{f(z)/(z-1)^(n+1)}dz n≧-1 n+1≧0 g(z)=f(z)/(z-1)^(n+1) a(n)={1/(2πi)}∫_{C}g(z)dz |z-1|…
2024.8.20 18:17にした質問の、 2024.8.28 15:15の解答の 「g(z)=t
…2024.8.20 18:17にした質問の、 2024.8.28 15:15の解答の 「g(z)=tan(z)/(z-π/2)^(n+1) の ローラン展開 は g(z)=Σ{m=-n-2~∞}a(m+n+1)(z-π/2)^m」 と 2024.8.28 09:21の解答の 「g(z)=Σ{n=-k~∞}a(n+1)(z-a)^(n+1) は 間違っ...…
3点を通る平面の方程式を行列式で表す
…行列式について勉強していたのですが、分からない部分があったので質問させてください。 一直線上にない3点 (a,b,c) (d,e,f) (g,h,i) を通る平面の方程式を求める、という問題です。 ま...…
検索で見つからないときは質問してみよう!