アプリ版:「スタンプのみでお礼する」機能のリリースについて

いろいろ調べていて、『一般に共役系が増えるほど吸収が長波長に・・・』と書いてあるのを良く見かけるのですが、それはなぜでしょうか。
またそれは蛍光でも同じことがいえますか。

A 回答 (3件)

光の吸収は、分子軌道のうち、電子がつまったもの(被占軌道)から、電子の入っていないもの(非占軌道)へ、光を吸った電子がたたき上げられる過程で起こります。


軌道のエネルギー差が吸収される光のエネルギーに相当しますから(ほんとはイコールではないけど)、被占軌道と非占軌道のエネルギーが近いほど、吸収される光のエネルギーは小さくなり、波長は伸びます。

さて、一番重要な光の吸収過程は、分子の最も高い被占軌道HOMOから、最も低い非占軌道LUMOへの遷移、HOMO-LUMO遷移です。当然、これが最も長波長の光を吸収します。

さて、共役系分子では、HOMOもLUMOも、パイ軌道になっています。そして、共役系が広がるほど、HOMOは上昇し、LUMOは低下していきます。これがなぜなの?ということを疑問に思われているのかもしれませんが、初等的な量子化学(あるいは振動論でも良いが)を習っていないと、うまい説明がおもいつかないので・・・ご存じでしたら良いですが、まだ習っていないのなら、そういうものなんだ、とでも思ってください。とにかく、電子が自由に動ける空間が広がるほど、HOMOとLUMOは接近していきます。

この極限ともいえるのが、グラファイトです。共役系がほぼ無限となった結果、HOMOとLUMOのギャップは消失し、電子が自由に運動できるようになるため、結果としてグラファイトは電気を流す導体となります。閑話休題。

蛍光も、吸収波長の逆を見ていることになりますから(これもほんとは違うが、ここではおいておきましょう)、吸収と同様、共役が伸びるほど、蛍光波長は長波長となっていきます。

ただし、蛍光のおもしろいところは、吸収が長波長になくとも、長波長の蛍光を出す分子がいろいろあるところです。
なんで?と思われるでしょうが、これはちょっと高等な話になりますから、もう少し進んでから勉強されるとおもしろいかもしれません。
    • good
    • 10

#1のphospholeさんが明快にご回答されていますので、以下は蛇足となります。

共役系の場合を量子化学の観点から少し突っ込んでみます。
共役系分子はざっくりいって分子鎖の中に自由電子(パイ電子)を閉じ込めた1次元井戸型ポテンシャル問題に還元できます(というのはパイ電子は鎖の外に飛び出していかないから)。1次元井戸型問題を解いて電子のエネルギーを計算すると分子鎖の長さ(井戸の幅)の2乗に反比例することが分かります(参考URL参照)。つまり、分子鎖が長くなればなるほどエネルギーは低くなります。波長はエネルギーと反比例しますから、低エネルギーになるほど長波長になる。。。これはイメージ的には長い弦と短い弦を爪弾いた場合、長い弦は低い音を、短い弦は高い音をだすことからもうなずけると思います(電子は波でもあります)。
具体的な計算例としてヘキサトリエンの最初の励起吸収波長は実験より247nmと求められていますが、井戸型の計算結果は249nmと驚くほど一致します。ブタジエンの場合は220nm辺りでしたかね(←うろ覚え)。

参考URL:http://www.phys.aoyama.ac.jp/~w3-furu/pdf/qma-20 …
    • good
    • 1

簡単な例として,1次元の箱の中の粒子問題で,箱の長さと電子数を変えた場合を考えてみるといいんですけどね.

    • good
    • 2

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています


このQ&Aを見た人がよく見るQ&A