No.1ベストアンサー
- 回答日時:
放物線の式をy=f(x)、その微分をf'(x)とすると、放物線上の点 (a,f(a))における接線の傾きは f'(a)であるので、
= f'(a)×(x-a)No.2
- 回答日時:
微分使わないときの求め方を。
放物線の式をy=px^2+qx+rとする。
すると、接点の座標は(a,pa^2+qa+r)。
接線の式をy=mx+bとすると、x=a,y=pa^2+qa+rを代入すれば、
b=pa^2+qa+r-maということがわかる。
次に、接点ではy=px^2+qx+r=mx+bが成り立つx、yは1組だけあるので、判別式より
(q-m)^2-4p(r-b)=0となる。
先ほどのb=pa^2+qa+r-maを代入すればmの値が求まり、
b=pa^2+qa+r-maからbの値が求まる。
こんな方法でできたと思います。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 【 数I 放物線と直線の共有点 】 問題 放物線y=x²+ax+bが点(1,1)を通り, 直線y=2 4 2022/07/18 09:57
- 数学 数学(積分) 面積公式について。「1/12公式」 二次関数(放物線)2本と接線一本のパターン におい 2 2023/04/06 16:20
- 数学 微分について教えてください 放物線y=x^2のx=1における微分係数を定義に従って求め、その点におけ 5 2023/04/16 15:38
- 数学 高校数学です。 放物線y^2=-2xとCに合同な放物線Dがある。Dは最初放物線y^=2xに一致してお 2 2022/12/17 13:44
- 数学 高校数学です。 放物線C:y^2=-2xとCに合同な放物線Dがある。Dは最初放物線y^=2xに一致し 0 2022/12/17 17:34
- 数学 放物線と円の接点についてです。96(1)の、[1]で重解だと接することがよくわかりません。 xの2次 4 2022/12/24 17:59
- 物理学 どうして放物線ですか? 15 2023/06/11 09:53
- 数学 放物線の対称移動の問題の答え方について質問があります 解く時に平方完成の形にして解くと思うのですが、 4 2022/05/30 18:17
- 数学 焦点のx座標が3、準線が直線x=5で、点(3.1)を通る放物線の方程式を求めよという問題について質問 4 2023/07/14 00:13
- 数学 数学 2次関数 1 2023/05/10 21:45
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
楕円の書き方
-
楕円の焦点,中心を作図で求め...
-
放物線y=x^2-3xと y=0,y=4 で囲...
-
2:1正楕円とは何ですか?
-
放物線y=x^2+a と円x^2+y^2=9に...
-
y=ax^2+bx+cのbは何を表してい...
-
tの値が変化するとき、放物線y=...
-
高校の数学の宿題を教えて頂き...
-
放物線y=x^2+aと円x^2+y^2=9が...
-
x軸と2点(α,0),(β,0)で交わ...
-
日常生活で放物線や双曲線の例...
-
2つの楕円の交点の求め方が分...
-
数学の変数にはなぜ「x」が使わ...
-
放物線と円の接点についてです...
-
二次不等式
-
添付画像の放物線はどんな式で...
-
【 数I 2次関数 】 問題 放物線...
-
パラボラアンテナはなぜ放物線...
-
軌跡の「逆に」の必要性につい...
-
楕円の性質に関して
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
噴水はなぜ放物線をえがくので...
-
y=ax^2+bx+cのbは何を表してい...
-
楕円の書き方
-
楕円の焦点,中心を作図で求め...
-
2:1正楕円とは何ですか?
-
添付画像の放物線はどんな式で...
-
日常生活で放物線や双曲線の例...
-
tの値が変化するとき、放物線y=...
-
二次関数の良さ
-
双曲線の焦点を求める時はなぜ√...
-
【至急】困ってます! 【1】1、...
-
【 数I 2次関数 】 問題 放物線...
-
放物線y=2x² を平行移動した曲...
-
パラボラアンテナはなぜ放物線...
-
頂点が点(2,6)で、点(1,4)を通...
-
2つの楕円の交点の求め方が分...
-
数学の問題です。 実数x、yが、...
-
数3 放物線 y^2=4pxという式を...
-
数学における「一般に」とは何...
おすすめ情報