数学の時間で確率の計算方法を勉強したと思います。全く思い出せないのですが。 最近話題のロト・シックス(数字01~43)の確率が1/6,096,454となる計算方法を教えてください。

A 回答 (4件)

●問題1:1~43までの数字を、重複なしに6つ選びます。

並べる順番は関係がない。何通りの選び方があるか。

「並べ方」と「選び方」の概念の違いと、両者の関係が分かればご了解戴けると思います。

(1) ひとつづつ数字を選んで並べてみましょう。
最初の数字は43通りある。2番目は残りの42通りの数字から選ぶ。3番目は残りの41通りから....
とやると
N=43×42×41×40×39×38
通りできる。だから1~43のうちの6個を並べる「並べ方」は丁度N通りあります。

 しかしですよ、この中には1,2,3,4,5,6という「並べ方」も、2,1,3,5,4,6という「並べ方」も、別々のケースとして勘定されています。でもロトでは数字を並べる順番は関係がないんでした。だからNでは多すぎる。

(2) 今度は、相異なる6つの数字を並べる並べ方が何通りあるか考えてみます。さっきと同じ考え方で、
最初の数字は6通り選び方がある。2つ目は5通り、.....6つ目は1通り。だから、
M = 6×5×4×3×2×1
通りの並べ方がある。つまり、どんな6個の数字の組み合わせであれ、並べ方を変えるだけでM通りに「水増し」できるわけです。

(3) N通りの「並べ方」のうちの一つ<a1,a2,a3,a4,a5,a6>を取り出してみると、それと同じ数字の組み合わせでできている他の「並べ方」M通りが、N通りのうちに含まれている。ところがロトではこれら(使っている数字が同じで並べ方が違うだけのもの)M通りは全部同じものと考えます。使っている数字の組み合わせ(つまり「選び方」)が違うものが何通りあるか、が問題です。一つの「選び方」についてM通りずつの「並べ方」があるのだから、「選び方」自体は
N÷M 通り
である。これが答です。

(4) 検算しましょう。(N÷M )通りある6個の数字の組(選び方)の一つA={a1,a2,a3,a4,a5,a6} について、M通りの並べ方ができる。別の6個の数字の組(選び方)Bを持ってくると、これはAとは使っている数字が少なくとも一つ違いますから、どう並べ直したってAを並べたものと一致することはあり得ません。従ってAとBのそれぞれの並べかたを合わせて2×M=12通りができ、その中には重複は有りません。同様にして、全部で(N÷M )通りある選び方のそれぞれについて、M通りの並べ方があるのだから、全部で(N÷M)×M = N通りの並べ方がある。

(5) これを式で書いてみましょう。
n ! (nの階乗)というのは n ! = n×(n-1)×.....×2×1の意味です。だから
M = 6!
ですね。一方、
N =43! / (43-6)!
と書ける。分子と分母で余計な数字が打ち消し合って、N=43×42×41×40×39×38になることを確かめてください。
従って答である(N÷M )は
N÷M = 43! / ((43-6)! 6!)
ということになります。これをしばしば記号 43C6 = 43! / ((43-6)! 6!) で表します。"C"は組み合わせ(combination)の頭文字です。)

さて、
●問題2:ロト・シックスで1等を当てる確率は?

全部で 43C6 通りある「選び方」の中で、1等になるのは1通りだけであり、どの選び方が起こりやすいということもない。どんな「選び方」にも同じ当選確率があると考えられます。だから答は
1÷(43C6) = ((43-6)! 6!)/43!
ということです。約600万分の1ですか。1年以内にあなたが交通事故で死亡する確率の方が、これより数百倍大きいわけですね。
    • good
    • 0
この回答へのお礼

ご丁寧に、説明をしていただき、有難うございました。
色々と参考になりました。
でも、ちょっと、最後のセンテンスの文章怖い。

お礼日時:2001/03/21 04:42

おんなじ質問がすでに(何回か)でてます。

ご参考まで↓

参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=43488

この回答への補足

それでも、一等の当選確率がどうしてそうなるのか、わかりません。

補足日時:2001/03/20 05:36
    • good
    • 0

6×5×4×3×2×/43×42×41×40×39×38です。

この回答への補足

なるほど。

補足日時:2001/03/20 05:35
    • good
    • 0

43この中から6こ選ぶ組み合わせの数が6,096,454種類あるのです。


組み合わせを求めるには、コンビネーションの式を使います。

nCp=nPr÷r!
上の式でnこの中からpこ選ぶ組み合わせの個数がでます。

代入すると、

43C6=43×42×41×40×39×38÷6!(6×5×4×3×2×1)
 = 6,096,454

6,096,454の中の1つだから確率は1/6,096,454になります。 

この回答への補足

すみません、よくわかりません。

補足日時:2001/03/20 05:35
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

今、見られている記事はコレ!

  • 数学は日常生活に役立っているのか?専門家に聞いてみた

    3月14日は、1997年に財団法人日本数学検定協会が制定した数学の日である。あなたは学生の頃、数学は得意だっただろうか? 筆者のように得意ではなかった人なら、「将来、これが何の役に立つのだろう……」と四苦八苦...

  • この問題解けますか?「1・1・5・8」を使って10を作るパズル

    テンパズルというのをご存知でしょうか。この名前は知らなくともやったことのある方も多いと思いますが、どういうものかと言いますと、4つのひと桁の数字を足したり引いたり掛けたり割ったりして10にする、というも...

  • 数学は実生活で役立つのか

    学校で学んだ事柄が後々の仕事に役立ったなどという話は、よくあるケースですが、学んでいる最中はなかなか気づかないものです。子どもから「数学ってなんの役に立つの?」と聞かれて、数学が苦手だった親はどう答え...

  • 無駄に覚えている数字ってどのくらいあります?

    覚えたくても覚えられない数字がある一方で、なんとはなしに記憶した数字がずっと頭に残っているケースもあります。くっきりと覚えてはいるものの「多分、これ一生使わないんだろうな…」と思っている数字、今日はそ...

  • あなたも挑戦!?バカ田大学入試

    大人気ドラマ「ガリレオ」、観ている方も多いのではないでしょうか。学生時代に数学が苦手で、もう数式なんて見たくない!と思っていても、さらさらと難解な数式を操る湯川先生(福山雅治さん)の姿を見るとかっこい...

おしトピ編集部からのゆる~い質問を出題中

お題をもっとみる

このQ&Aを見た人が検索しているワード


このカテゴリの人気Q&Aランキング

おすすめ情報

カテゴリ