アプリ版:「スタンプのみでお礼する」機能のリリースについて

楕円の曲率を計算してみたのですが、
曲率が一番大きな箇所・・・長径の端点
曲率の最も少ない箇所・・・媒介変数表示による角度で大体45°を超えた
             あたり
の結果がでました。短径の端点が曲率最小とならなかったのが不思議です。
計算結果を検証する方法はないでしょうか。作図でも構いません。
URLのご提示でも構いません。

A 回答 (1件)

質問者さんの結論は正しくないようですね。


以下で検証してみてください。
●楕円の任意点での作図法
http://www.k3.dion.ne.jp/~edo-cad/daen,,,no,,,ky …

●曲率中心の軌跡を縮閉線(エボリュート)といい,縮閉線に対してもとの曲線(今の場合楕円)を伸開線(インボリュート)といいます.縮閉線の接線は伸開線の法線ですから,これら2曲線の間で測った長さは伸開線の曲率半径になります。曲率半径の逆数が曲率です。楕円の場合楕円の式は
  (x/a)^2+(y/b)^2=1…(1)
この縮閉線は次のようになります(参考URL)。
  (ax)^(2/3)+(by)^(2/3)=(a^2-b^2)^(2/3)…(2)
a,bに具体的な値を入れて2曲線を作図して(2)の法泉を引いて曲率半径を図れば確認できます。
楕円の曲率半径は計算で出ますよ。

2a=長径、2b=短径(a>b)、とすると、
x = acos(t), y = bsin(t), t:真円の場合の角度(rad単位)
曲率:k = ab / (a^2 sin(t)^2 + b^2 cos(t)^2)^(3/2)
曲率半径:R = 1 / k
で曲率半径:Rが計算できます。ここで、x = acos(t), y = bsin(t)
t=π/2(90度)のとき、k2=b/a^2(最小曲率)、R2=a^2/b(最大曲率半径)
t=0のとき、k1=a/b^2(最大曲率), R1=b^2/a(最小曲率半径)
t=π/4(45度)のとき、k4=ab(2√2)(a^2+b^2)^(-3/2), R4=(a^2+b^2)^(3/2)/{ab(2√2)}

となります。a=2,b=1の場合計算してみると
R2=4 ,k2=1/4=0.25,
R1=1/2=0.5 ,k1=2,
R4=(5/8)√10=1.9764…, k4=(4/25)√10=0.5059…
となります。

参考URL:http://www.geocities.jp/ikuro_kotaro/koramu/243_ …
    • good
    • 0
この回答へのお礼

本当にありがとうございました。

お礼日時:2007/03/29 07:41

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!