こんな問題がありました。
「45.55度を_度_分で表せ」

よく野球の打率に_割_分_厘という表現がありますが、そんなものなのでしょうか?
角度に「分」を使うなんて知りませんでした。
それで、この場合、「45度55分」か「45度5.5分」だと思うのですがいかがでしょう?
どなたか雑学か算数の得意な方、ご助言をよろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

はじめまして。



角度を10進数(度)から60進数(度分秒)に変換すればいいと思います。
45.55°→45度33分
になります。

実際の数学では、角度をラジアン(弧度法...漢字は間違っているかも)
で表すことが多いです。
実際に60進法で表すのは工業系の学問くらいだと思います。
    • good
    • 2

回答は既に出ている通り,1度=60分,1分=60秒で換算すればよいですね。



算数や数学では,角度の分(′)・秒(″)は特に先生が教えない限り,教科書などには出てこないと思います。
現行の指導要領(89年公示)では,小学4年生で「角の大きさの単位(度(°))について知ること。」とありますが,分・秒については,中学・高校も含めて登場しません。
高校の地学では天文分野で角度の秒が登場するのですが,「1度は何分?」と聞いても誰も知らなかったりします。

数学では,微分・積分が楽なので,Ryo_Hyugaさんの書かれている通りラジアンがよく使われますが,理科では度・分・秒のほうが多いです。あと測量などでもそうですね。

ちなみに,割合の「分」は「ぶ」ですが,角度は(時間も)「ふん」と読みます。
    • good
    • 2

分で表すことがあるときは60分単位ですので


.55は33分になりますので
45度33分でしょう。
    • good
    • 1

一度が60分です。

なので、0.55度は、0.55×60で 33分です。
だから、45度33分ですね。

算数で習わないのかなあ?
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q三角形の角度を1つ固定して残り2つを変える変換

三角形の角度を1つ固定して残り2つを変えていくような変換は何変換になりますか?
合同変換や相似変換は論外として,位相変換だと三角形が維持できなくなるので….

Aベストアンサー

三角形の形を維持した変換なら、アフィン変換でしょうね。

ただし、角度を1つ固定するというわけにはいきませんが。

Q【数学】「角度」と「拡度」 角度は知ってますが拡度って何ですか? 角度と何が違うんですか? 拡度って

【数学】「角度」と「拡度」

角度は知ってますが拡度って何ですか?

角度と何が違うんですか?

拡度ってどこのこと?

Aベストアンサー

「拡度」? 何それ?
http://astamuse.com/ja/keyword/268444

QOpenCVで画像をある角度から見たように変換する

OpenCVを使い、画像をある角度から見たように変換したいと考えています。

しかし、cvGetPerspectiveTransform関数では4つの頂点座標を入力することによって変換行列を作成しているみたいなんですが、角度の概念がなくどうしようか困っています。
私がしたいのは任意の角度からみたように画像を回転させたいのでどうすればいいかわかりません。


言いたいことがうまく伝わらないかもしれませんがよろしくお願いします。

Aベストアンサー

角度だけで距離は関係ないってことは平行投影?
それなら回転と拡大縮小を組み合わせるだけ。
透視投影なら、それ用の関数はないみたいだから、変換行列の公式に値を当てはめる。

QΣa_kとΣb_kを正項級数.lim(a_n/b_n)=0且つΣb_kが収束ならばΣa_kも収束

[問]Σ[n=0..∞]a_kとΣ[n=0..∞]b_kを共に正項級数とする。
lim[n→∞](a_n/b_n)=0且つΣ[n=0..∞]b_kが収束ならばΣ[n=0..∞]a_kも収束。

を証明したいのですがどうすれば分かりません。

Σ[n=0..∞]a_kが正項級数とlim[n→∞]lim(a_n/b_n)=0より
a_n≦0

これからどのようにすればいいのでしょうか?

Aベストアンサー

こんばんは。問題に対する質問者さんの考え方は基本的の事柄を理解していないように感じます。解答のアウトラインを説明しますので細部はご自分で解析学の教科書を開いて勉強してください。

lim[n→∞](a_n/b_n)=0 より、ある実数 K>0 が存在して

a_n/b_n < K (for all n>0) …(1)

よって、a_n < Kb_n (for all n>0)

Σ[n=0..∞]b_n が収束するから

Σ[n=0..∞]a_n < Σ[n=0..∞]Kb_n = KΣ[n=0..∞]b_n < ∞ …(2)

したがって、Σ[n=0..∞]a_n は収束する。

以上が解答です。この解答に使われている重要な事柄は

(1) 収束する数列は有界である。
(2) 上に有界な単調増加の数列は収束する。

です。レポートにそのまま書くのはかまわないと思いますが、それでは本当の意味で数学の力はつきません。時間がかかってもかまいませんから、きちんと(1)、(2)を勉強してそれからこの問題の解答を理解するようにしてください。

こんばんは。問題に対する質問者さんの考え方は基本的の事柄を理解していないように感じます。解答のアウトラインを説明しますので細部はご自分で解析学の教科書を開いて勉強してください。

lim[n→∞](a_n/b_n)=0 より、ある実数 K>0 が存在して

a_n/b_n < K (for all n>0) …(1)

よって、a_n < Kb_n (for all n>0)

Σ[n=0..∞]b_n が収束するから

Σ[n=0..∞]a_n < Σ[n=0..∞]Kb_n = KΣ[n=0..∞]b_n < ∞ …(2)

したがって、Σ[n=0..∞]a_n は収束する。

以上が解答です。この解答に使われている...続きを読む

Q9mm厚、MDF アクリルの角度切り 30度から5度刻み

小口面を角度切りをするよい方法を教えて頂けないでしょうか?

切りたいものは9mm厚 幅275のMDF材です。
できればアクリル8mm厚 幅275も切れたらと思っています。

切りたい角度が30度、35度、40度・・・85度、90度といった感じです。
90度から45度までは、丸のこでなんとかできるのですが、
それより浅い角度はどうしたら良いでしょうか?
精度は±0.5度くらいでできればと思っています。

ジグを作ってトリマーなどで削るのがよいでしょうか・・・
宜しくお願い致します。

Aベストアンサー

>これは薄いと難しいということですよね?
薄い場合だと、角度を正確に出すのが難しくなります。要するに精度の問題ですね。
角度とは日本の線のなす角度ですから、その片方の線の長さ(つまり今回は厚み方向)が短いと精度を出しにくいということです。

長い物同士のほうが精度を出しやすいのです。
角度の墨付けは直接角度は断面にしかかけませんが、それは難しいし加工のときに役には立ちませんから、長さの測定で角度を明示します。
つまりtan(θ)=厚み/ベベル長さ
ですから、厚みが既知なら、ベベル長さの線を描けばよいのです。
このとき厚みが厚いほうがベベル長さも長くなり、精度を出しやすくなります。

>数が多いのと、カンナでのMDFの平面、ちょっと自信がありません。
そうですか。だとすると、材料の大きさはどの程度ですか?
加工面が上になるように材料を垂直に立てた状態で加工できるのであれば、電動丸鋸でも出来ますよ。
つまり45度以上は水平に置いて加工し、45度以下の鋭角は垂直に置いて加工します。
このときに必要なのは、2x4と2枚の合板などで、直角ジグを作ることです。
直角ジグの片方の平面を作業台に固定すると、もう片方は垂直な面になります。
その状態でMDF材料を垂直面に対してクランプで固定します。

このときジグの水平面よりわずかに頭を出すようにして固定し、あとは丸鋸で斜めカットします。

数が多いとのことなので、上記方法がよいかと思います。材料の長さが長いと垂直に立てての加工が出来ないのですけど。

ちなみに丸鋸を使う場合には材料の厚みは厚くしなくても、事前に丸鋸の角度を厚みのある材料で試し切りして角度を合わせればよいです。

>これは薄いと難しいということですよね?
薄い場合だと、角度を正確に出すのが難しくなります。要するに精度の問題ですね。
角度とは日本の線のなす角度ですから、その片方の線の長さ(つまり今回は厚み方向)が短いと精度を出しにくいということです。

長い物同士のほうが精度を出しやすいのです。
角度の墨付けは直接角度は断面にしかかけませんが、それは難しいし加工のときに役には立ちませんから、長さの測定で角度を明示します。
つまりtan(θ)=厚み/ベベル長さ
ですから、厚みが既知なら、...続きを読む

Q単関数Σ[k=1..n]a_k1_E_kが可測⇔E_1,E_2,…,E_kは全て可測

証明問題です。

1_E(x)=1(x∈Eの時),0(xがEに含まれない時)という関数1_Eを定義関数(特性関数)という。

[命題] {x∈E;f(x)>r}(for∀r∈R)が可測ならば{x∈E;r≦f(x)≦r'}(r,r'∈R)も可測。

[問](Ω,B)を可測空間とする。
単関数Σ[k=1..n]a_k1_E_k (a_k∈R,E_k⊂Ω,1_E_kは定義関数(特性関数) (k=1,2,…,n))とする。
f:=Σ[k=1..n]a_k1_E_kがE:=∪[k=1..n]E_kで可測関数⇔E_1,E_2,…,E_kは全て可測集合。

[証]
(必要性)
fがEで可測関数だから∀r∈R,{x∈E;f(x)>r}∈B.
それでE_i∈Bとなる事を示せばいいのだから
fは単関数だからf(E_i)=a_iとなる定義域がある。
よって上記命題を使って,E_i={x∈E;a_i≦f(x)≦a_i}∈Bとなる予定だったのですが
関数値がa_iとなる定義域はE_iだけとは限りませんよね。
各a_1,a_2,…,a_kが全て異なる値なら
個々でE_i={x∈E;a_i≦f(x)≦a_i}∈Bと持って行けて命題が使っておしまいなのですが,
もしかしたら同じ関数値を採る定義域がE_1,E_2,…,E_kの中に複数個あるかもしれませんよね。
(例えばf=(E_i)=f(E_j)=a_i)
その場合,{x∈E;a_i≦f(x)≦a_i}=E_i∪E_jとなってしまい,E_i∪E_j∈Bで
E_i∪E_jが可測集合である事は示せますがE_iひとつだけで可測になる事が示せません。

こういう場合はどうすればE_iだけが可測である事を示せますでしょうか?

証明問題です。

1_E(x)=1(x∈Eの時),0(xがEに含まれない時)という関数1_Eを定義関数(特性関数)という。

[命題] {x∈E;f(x)>r}(for∀r∈R)が可測ならば{x∈E;r≦f(x)≦r'}(r,r'∈R)も可測。

[問](Ω,B)を可測空間とする。
単関数Σ[k=1..n]a_k1_E_k (a_k∈R,E_k⊂Ω,1_E_kは定義関数(特性関数) (k=1,2,…,n))とする。
f:=Σ[k=1..n]a_k1_E_kがE:=∪[k=1..n]E_kで可測関数⇔E_1,E_2,…,E_kは全て可測集合。

[証]
(必要性)
fがEで可測関数だから∀r∈R,{x∈E;f(x)>r}∈B.
それでE_i∈Bとなる事を示せばいいのだから
fは単...続きを読む

Aベストアンサー

a_kはすべて異なるという条件はありませんか?
例えば、非可測集合Eをとって
1_E + 1_(E^c)=1
は可測関数、しかしE,E^cは非可測です。

Q%を角度に変換するには…

関数電卓の使用方法について教えてください。
パーセント(%)を角度(°)に変換したいのですが、どうすれば良いでしょうか?
(例)3.2%の上昇勾配を角度にすると何度?といった感じです。
ご教示の程よろしくお願い致します。

Aベストアンサー

こんばんは。

関数電卓の使い方については、すでに回答がありますので、
知っておくと便利な考え方を述べます。


実は、私はいつも、暗算でやっています。
(暗算が不得意な私でさえ、です。)


角度θをラジアンの単位で表せば、
θが小さいとき
tanθ ≒ θ
という近似が成り立ちます。
勾配が5%でも、かなり急な坂ですので、一般の道路については、θは十分小さいと考えることができます。

%で表される勾配をgと置くと、

tan(g/100) ≒ g/100 ≒ θ (単位はラジアン)

度に変換すればよいので、
g/100 ÷ π × 180 ≒ 0.57

つまり、パーセントの数に0.57をかければ、角度になります。
3.2% → 3.2×0.57=1.82 → 約1.82度

冒頭で述べた私の「暗算」というのは、
何のことはない、単に、
「0.6をかける」
ということなのでした。

3.2% → だいたい3 → 3×0.6 → だいたい1.8度


というわけで、
関数電卓やGoogle電卓をお使いになる際、
打ち間違いで大幅に答えを間違えることのないよう、
「0.6をかけたのと大体同じ」
ということを覚えておくことをおすすめします。

こんばんは。

関数電卓の使い方については、すでに回答がありますので、
知っておくと便利な考え方を述べます。


実は、私はいつも、暗算でやっています。
(暗算が不得意な私でさえ、です。)


角度θをラジアンの単位で表せば、
θが小さいとき
tanθ ≒ θ
という近似が成り立ちます。
勾配が5%でも、かなり急な坂ですので、一般の道路については、θは十分小さいと考えることができます。

%で表される勾配をgと置くと、

tan(g/100) ≒ g/100 ≒ θ (単位はラジアン)

...続きを読む

Q単位円上にn点A_1,A_2,…A_nがあったとき、OA_1↑+OA_2↑+…+OA_n↑=0↑ならば

つい先ほど数学カテですばらしい回答をいただきました。ありがとうございます。拡張問題としてはどうなるのか疑問を持ちました。

中心を原点Oとする単位円上にn点A_1,A_2,…,A_nがあったとき、

OA_1↑+OA_2↑+…+OA_n↑=0↑

とn個のベクトルの和が0となるとき、いったいどういった関係があるのでしょうか?

たとえば、n=3であれば、3点A_1,A_2,A_3は正三角形の頂点をなすことは、先ほど教えていただきました。

たとえば、n=4であれば、4点A_1,A_2,A_3,A_4は長方形(もしくはつぶれて線分になったもの)の頂点をなすであろうと予想しますが。

Aベストアンサー

aiueoさんがおっしゃっておられることは、例えば、(以下すべてベクトルです)
OB1=OA1
OB2=OB1+OA2
...
OBn=OB(n-1)+OAn
としたときに、OBn=0で、多角形B1B2B3...Bnが等辺多角形になるということですね。
あまり良く考えずにその点勘違いし、失礼しました。
私(ならびに他の方々)の回答は単位円の周上のn個の点A1,A2,A3,...,Anの位置関係の話ですが、それとauieuさんの等辺多角形になるという事実との関係が見えて興味深いです。

Qカメラの28mmとは、角度で言うと何度なのでしょう?

カメラ、デジカメでは、広角を言うのに「28mm!」などとミリで謳います。
webカメラでは、「100°!」などと角度で謳います。

「ミリ」と「角度」を換算する計算式などあれば知りたいです。

よろしくおねがいしますー

Aベストアンサー

#1です。

>webで、入力すると、導き出してくれるようなところがあればいいんですけどねー。

ないことはないのですが。
http://chatvert.web.fc2.com/zavod/culc/cul_df.html

ページの(対角線)画角に75.38(度の窓に)を入力して処理ボタンをクリックすると、焦点距離が表示され、28になります。

反対の処理はできないようですから、例えば、画角の方を変えて、35mmになるまでやるしかないですが。

Qα_1,α_2,…,α_n が非零の時,e^(α_1t),e^(α_2t),…,e^(α_nt)が一次独立を示す問題です

Let α_1,α_2,…,α_n be distinct numbers, ≠0. Show that the functions
e^(α_1t),e^(α_2t),…,e^(α_nt) are lineraly independent over the complex numbers.
[Hint: Suppose we have a linear relation
c_1e^(α_1t)+c_2e^(α_2t)+…+c_ne^(α_nt)=0
with constants c_i,valid for all t. If not all c_i are 0,without loss of generality,we may assume that none of them is 0.Differentiate the above relation n-1 times. You get a system of linear equations. The determinant of its coefficients must be zero.(Why?) Get a contradiction from this.]

と言うe^(α_1t),e^(α_2t),…,e^(α_nt)が一次独立を示す問題です。
(もし,c_iの一つでも非零なら全c_iも非零である事を使ってよいようです)
n-1回微分して得られる一次連立方程式の係数行列の行列式は

とりあえずn-1回微分してみましたらその係数行列の行列式が0でなければならない事から
矛盾を引き出せと述べてあります。

係数行列Aは
A:=
(c_1,c_2,…,c_n)
(c_1α_1,c_2α_2,…,c_2α_n)
(c_1α_1^2,c_2α_2^2,…,c_nα_n^2)
:
(c_1α_1^(n-1),c_2α_2^(n-1),…,c_nα_n^(n-1))

と書けると思います。

そして,その一次連立方程式は
At^(e^α_1t,e^α_2t,…,e^α_nt)=0
と書けます。
(但しtは転置行列を表す)

このdet(A)=0でなければならないのは何故なのでしょうか?

そしてdet(A)=0ならどうして矛盾なのでしょうか?

Let α_1,α_2,…,α_n be distinct numbers, ≠0. Show that the functions
e^(α_1t),e^(α_2t),…,e^(α_nt) are lineraly independent over the complex numbers.
[Hint: Suppose we have a linear relation
c_1e^(α_1t)+c_2e^(α_2t)+…+c_ne^(α_nt)=0
with constants c_i,valid for all t. If not all c_i are 0,without loss of generality,we may assume that none of them is 0.Differentiate the above relation n-1 times. You get a system of linear equations. The determinant of its coefficients must ...続きを読む

Aベストアンサー

この「ヒント」が・・・あんまりよくない気がする

・微分を繰り返して,方程式を作る
c_1e^(α_1t)+c_2e^(α_2t)+…+c_ne^(α_nt)=0
c_1α_1e^(α_1t)+c_2α_2e^(α_2t)+…+c_nα_ne^(α_nt)=0
・・・
c_1α_1^{n-1}e^(α_1t)+c_2α_2^{n-1}e^(α_2t)+…+c_nα_n^{n-1}e^(α_nt)=0
・t=0を代入する
c_1+c_2+…+c_n=0
c_1α_1+c_2α_2+…+c_nα_n=0
・・・
c_1α_1^{n-1}+c_2α_2^{n-1}+…+c_nα_n^{n-1}=0
これをcjについての連立方程式だとして整理すると,
係数の行列の行列式は
「ファンデルモンドの行列式」ってやつで
すぐ計算できる.
そうすると「αi」が全部違うから0ではない
つまり,係数が全部0になり一次独立.

ヒントの通りにするなら
without loss of generality,we may assume that none of them is 0.
の意味を理解して,やっぱりファンデルモンドで矛盾

この「ヒント」が・・・あんまりよくない気がする

・微分を繰り返して,方程式を作る
c_1e^(α_1t)+c_2e^(α_2t)+…+c_ne^(α_nt)=0
c_1α_1e^(α_1t)+c_2α_2e^(α_2t)+…+c_nα_ne^(α_nt)=0
・・・
c_1α_1^{n-1}e^(α_1t)+c_2α_2^{n-1}e^(α_2t)+…+c_nα_n^{n-1}e^(α_nt)=0
・t=0を代入する
c_1+c_2+…+c_n=0
c_1α_1+c_2α_2+…+c_nα_n=0
・・・
c_1α_1^{n-1}+c_2α_2^{n-1}+…+c_nα_n^{n-1}=0
これをcjについての連立方程式だとして整理すると,
係数の行列の行列式は
「ファンデルモンドの行列式」ってやつで
す...続きを読む


人気Q&Aランキング

おすすめ情報