-3分の2(-3/2)は、有理数ですか?

このQ&Aに関連する最新のQ&A

A 回答 (2件)

>>マイナスは関係ないんですね?!


無いですよ。-1/2も1/2も、-1も1も有理数。
有理って言うのは、分数で書けるって言う意味だからね。

整数の3も3/1、と、分数で書けるから有理数。
    • good
    • 0
この回答へのお礼

ありがとうございます!

お礼日時:2017/04/16 23:47

結果が分数や整数で表せるものが有理数ですよ。

    • good
    • 0
この回答へのお礼

マイナスは関係ないんですね?!
ありがとうございます!

お礼日時:2017/04/15 18:09

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aと関連する良く見られている質問

Qf(x)=A(x-2)(x-3)(x-4)+B(x-1)(x-3)(x-4)+C(x-1)(x-2)(x-4)+D(x-1)(x-2)(x-3)

(問題)xの三次関数f(x)があって、f(1)=1,f(2)=4,f(3)=9,f(4)=34であるとき、f(5)を求めなさい。

解答は別解がいろいろあったのですが、そのうちの一つがわかりませんでした。それは次のように書いてありました。

f(x)=A(x-2)(x-3)(x-4)+B(x-1)(x-3)(x-4)+C(x-1)(x-2)(x-4)+D(x-1)(x-2)(x-3) のように置くと、A,B,C,Dが容易に求めることができる。

なぜこのように表せるのか、どうしてこう思いついたのか、わかりません。考え方を教えてください。よろしくお願いいたします。答えはf(5)=97です。

Aベストアンサー

ranx さんの言うように、
x=1, x=2, x=3, x=4 の場合の解が与えられているので、
その際にどれかがゼロになるように、式を与えれば、
あとは、連立一次方程式で、元が4個で方程式が4本
なので、簡単に解けるわけです。

それぞれ代入した式4本を書いてみればわかると思います。解けるでしょ?
最後まで解かなくても、f(5) は、A,B,C,D を使って
出すことはできますね。

Qcosx = 1/√2 - (1/√2)・(x-π/4) - (1/2√2)・(x-π/4)^2 +

cosx = 1/√2 - (1/√2)・(x-π/4) - (1/2√2)・(x-π/4)^2 + {(x-π/4)^3/3!}・sin(θx)  
(0<θ<1)

f(x) = (4/π^2)・{2(x-π/4)(x-π/2)-√2・x(x-π/2)}
このグラフが分かりません…
教えてください!

Aベストアンサー

+ {(x-π/4)^3/3!}・sin(θx) は
+ {(x-π/4)^3/3!}・cos(θ(x-π/4)) ではないかと...違うかな?

で、これは cosx そのものです。θは x の関数なのでそれに惑わされないように。


下のはそれでなく、f(x)=(8/π^2){ (x-π/4)(x-π/2) - √2 x(x-π/2) } が正しいと思います・・・
このグラフは添付した図になります。
かなり近いです。

描き方は、計算機を用意して頂点を数値計算、あとは (0, 1) 、(π/4, 1/√2) 、(π/2, 0) を通るように二次関数のグラフを描けば良いです。
あるいはグラフ描画ソフトの力を借ります。

Q指数に関するな問題で、(1)2(3x+2)-4(x)+2(x+1)-5=0  (2)2(x)+2(-x)<4分の17 の2問についてご教授ください。

(1)2(3x+2)-4(x)+2(x+1)-5=0  (2)2(x)+2(-x)<4分の17 の二つの問題について、答えをご教授ください。
(1)は「次の方程式を解け」 (2)は「次の不等式を解け」となっております。
( )は指数になります、うまく表示をさせることができず申し訳ありません。
手元には解説と答えのどちらもないので、簡単な過程式も付けて頂けると大変助かります。
ご教授頂ける方是非よろしくお願い致します。

Aベストアンサー

>( )は指数になります、うまく表示をさせることができず申し訳ありません。
指数という意味で以下のように表記します。
(1) 2^(3x+2)-4^x+2^(x+1)-5=0
2^x=yとおくと
2^(3x)=(2^x)^3=y^3
2^(3x+2)=2^(3x)×2^2=4y^3
4^x=2^(2x)=(2^x)^2=y^2
2^(x+1)=2^x×2=2y
従って(1)は
4y^3-y^2+2y-5=0
これはy-1と2次式に因数分解できて
(y-1)(4y^2+3y+5)=0
2^x=yであるのでxを実数とするとy>0
4y^2+3y+5=0は実数解を持たない。
よってy=1に対応するx=0が答え。
(2)2^x+2^(-x)<17/4
y=2^xとおくと
y+1/y<17/4
y=2^xよりy>0であるので
y^2-17/4y+1<0
4y^2-17y+4<0
因数分解して
(4y-1)(y-4)<0
1/4<y<4
xに戻して
-2<x<2

Q{2+√(-121)}^(1/3) + {2-√(-121)}^(1/3) = 4

数学の本を読んでいまして、

{2+√(-121)}^(1/3) + {2-√(-121)}^(1/3) = 4

といった式変形が出てきました。
ここでは(1/3)乗と書いていますが、本では√の左に3を書いて3乗根の意味です。

いわゆる二重根号と思いますが、どのようにして、変形されたのでしょうか?

Aベストアンサー

与式は4だけではなく、他の実数値も取ります。
又、虚数の範囲では更に多くの値を取ります。

先ず、A=(2+11i)^(1/3) を求めてみます。
A^3=2+11i.
A=a+bi (a, bは実数)とおくと、
(a+bi)^3=2+11i より、実数部分と虚数部分を比較して、
a^3-3ab^2=2 ...[1]
3a^2-b^3=11 ...[2]
この2式から普通に計算すると大変なので、工夫します。
[1]^2+[2]^2 を計算すると
a^2+b^2=5 ...[3]
[1], [2], [3]よりa, bを求めると、
A=2+i, -1+(√3)/2+(-1/2-√3)i, -1-(√3)2+(-1/2+√3)i.

同様に、B=(2-11i)^(1/3) からBを求めると、
BはAの共役複素数になり、
B=2-i, -1+(√3)/2-(-1/2-√3)i, -1-(√3)2-(-1/2+√3)i.

よって、与式A+Bは3*3=9通りの値を取ります。
この内、実数となるのは共役複素数の組み合わせで、
4, -2+√3, -2-√3, の3通りです。

与式は4だけではなく、他の実数値も取ります。
又、虚数の範囲では更に多くの値を取ります。

先ず、A=(2+11i)^(1/3) を求めてみます。
A^3=2+11i.
A=a+bi (a, bは実数)とおくと、
(a+bi)^3=2+11i より、実数部分と虚数部分を比較して、
a^3-3ab^2=2 ...[1]
3a^2-b^3=11 ...[2]
この2式から普通に計算すると大変なので、工夫します。
[1]^2+[2]^2 を計算すると
a^2+b^2=5 ...[3]
[1], [2], [3]よりa, bを求めると、
A=2+i, -1+(√3)/2+(-1/2-√3)i, -1-(√3)2+(-1/2+√3)i.

同様に、B=(2-11i)^(1/3) ...続きを読む

Q(x^4-2x^3-4x^2+13x-2)/(x-1)^5の部分分数分

(x^4-2x^3-4x^2+13x-2)/(x-1)^5の部分分数分解

取りあえず、A/(x-1)+(Bx^4+Cx^3+Dx^2+Ex+F)/(x-1)^5
で考えてみます。

中略

A+B=1
C-4A=-2
6A+D=-4
E-4A=13
A+F=-2

と、任意のAが決まれば残りの変数がきまる形です…ココから意味が不明ですが。

強引に解いてみると、
-1/(x-1)+(2x^4-6x^3+2x^2+9x-1)/(x-1)^5になりました。
検算すると合っている気もしますがどうなのでしょう?

すいませんがお知恵をください。
出題では単に部分分数分解しろとしかありません。

Aベストアンサー

回答者の展開式は部分分数展開式とは言えません。
なので計算しても意味なし。
以下のようにやり直してください。

部分分数展開は
(x^4-2x^3-4x^2+13x-2)/(x-1)^5
=A/(x-1) +B/(x-1)^2 +C/(x-1)^3 +D/(x-1)^4 +E/(x-1)^5 …(●)
と置いて、両辺に(x-1)^5をかけた式が恒等式になることから
A,B,C,D,Eの間の関係式を出して連立方程式として解いて
A,B,C,D,Eを求めれば良い。
(●)に代入すれば部分分数展開式になる。

(参考)正しく計算できればA=1,B=2,C=-4,D=3,E=6となるはず。


このQ&Aを見た人がよく見るQ&A

このカテゴリの人気Q&Aランキング

おすすめ情報