パワースペクトル密度とパワースペクトルはどう違うのでしょうか?

また、ランダム振動におけるG^2/Hzとはどの様な意味を示しているのでしょうか?

A 回答 (2件)

 説明不足だと思いましたので,「回答No.1」への追記です.


 パワースペクトル密度関数(以下,PSDと略します)の単位について,電気回路のイメージで話を進めさせてください.PSDを積分すると,その信号のパワーになります.電気でパワーの単位は[W]なので,PSDの単位は[W/Hz]です.これは電気でのお話でしたが,電気ではない信号についても考え方は同じで,PSDの単位は[○/Hz]になります.ここで,「○」はその分野特有の単位です.
    • good
    • 1

 「パワースペクトル密度とパワースペクトルはどう違うのでしょうか?」についてのみ述べます.(G^2/Hzについては分からないので)


 パワースペクトル密度関数が正式名称であり,パワースペクトルは略称のようなものです.また,単にスペクトルと言ったりもします.分野によって言い方は異なると思いますが,私は「パワースペクトル」と言っています.
 以上のようなお答えでご理解されたでしょうか.
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q自己相関関数とパワースペクトル密度関数、フーリエ変換について。

自己相関関数とパワースペクトル密度関数、フーリエ変換について。
パワースペクトル、パワースペクトル密度と自己相関関数についての質問です。

(tは時間、hは次数、fは周波数として)

ある信号x(t)の自己相関関数r(h)をフーリエ変換すると、その信号のパワースペクトル密度関数p(f)になるとネットにあったのですが、パワースペクトル密度関数p(f)と、信号x(t)をそのままフーリエ変換して得たパワースペクトルX(f)はどう違うんでしょうか。


ちなみに数学的な話というよりはコンピュータ上の処理(離散値)で考えています。

もともとパワースペクトルが『自己相関関数の離散フーリエ変換として定義される』と本にはあったのを読みました。

しかし同じ本の中に、『自己相関関数のフーリエ変換は正しくはピリオドグラムと言い、パワースペクトルとはピリオドグラムの平均値で求められる』とも書いてありました。

パワースペクトルとパワースペクトル密度関数はいったいどう違うのか…?とずっと考えているのですが分かりません。

あと(自己、相互)相関関数と(自己、相互)相関係数にはどのような関係があるのですか。回答よろしくお願いします。

前回1つ回答頂いたんですが解決できなかったのですみません、もう一度お願いします。

自己相関関数とパワースペクトル密度関数、フーリエ変換について。
パワースペクトル、パワースペクトル密度と自己相関関数についての質問です。

(tは時間、hは次数、fは周波数として)

ある信号x(t)の自己相関関数r(h)をフーリエ変換すると、その信号のパワースペクトル密度関数p(f)になるとネットにあったのですが、パワースペクトル密度関数p(f)と、信号x(t)をそのままフーリエ変換して得たパワースペクトルX(f)はどう違うんでしょうか。


ちなみに数学的な話というよりはコンピュータ上の処理...続きを読む

Aベストアンサー

http://www.tsunami.civil.tohoku.ac.jp/hokusai2/class/spec/07auto.pdf
の8ページ、9ページに
パワースペクトルG(ω)
自己相関関数R(ω)
信号のフーリエ変換F(ω)
の関係が書いてあります。

パワースペクトルを求めるのに自己相関関数を使うのは
原信号は-無限大から+無限大まで分布してますが、
自己相関関数は普通は0の周りに局在していますから計算が圧倒的に楽ですね。

上記の定義からわかるように、これらの関数はすべてある確定した原信号に対して定義されています。
ピリオドグラムという考え方は、原信号がいくつかあったときにその平均的な見方をした場合に定義される量です。

確率過程と見なされる原信号があったときに、上記自己相関関数などを原信号の母集団のなかで平均操作したものとお考えください。

相関関数と相関係数の違いですが、特定の値についての相関関数が相関係数だと考えればよいと思います。
たとえば同時刻の信号Xと信号Yの積の平均値などが相互相関係数に該当します。
相関関数を扱っているときには相関係数というものを考える意味はないと
思います。

また、自己相関係数というのは常に1で考える意味がないと思います。

http://www.tsunami.civil.tohoku.ac.jp/hokusai2/class/spec/07auto.pdf
の8ページ、9ページに
パワースペクトルG(ω)
自己相関関数R(ω)
信号のフーリエ変換F(ω)
の関係が書いてあります。

パワースペクトルを求めるのに自己相関関数を使うのは
原信号は-無限大から+無限大まで分布してますが、
自己相関関数は普通は0の周りに局在していますから計算が圧倒的に楽ですね。

上記の定義からわかるように、これらの関数はすべてある確定した原信号に対して定義されています。
ピリオドグラムという...続きを読む

Qu=g(r)/r r=(x^2+y^2+z^2)^(1/2)のとき、uxx+uyy+uzz

u=g(r)/r r=(x^2+y^2+z^2)^(1/2)のとき、uxx+uyy+uzzをrの関数で表させる問題なんですが、まずux=∂g/∂r(1/r)-g(1/r^2)であってますか?ここから先どうすればいいのか分かりません。Uxxがでれば対象性から求められそうなきがしますが。gはC^(2)級とあったのですがこれはどういう意味ですか?

Aベストアンサー

#2のKENZOUです。
>uxx=(∂ur/∂r)rx・rx+ur・(∂rx/∂x)
右はいいのですが、(∂ur/∂r)rx・rxとなる理由が分かりません。

ux=(∂u/∂r)(∂r/∂x)=ur・rx
uxx=(∂ur/∂r)(∂r/∂x)・rx+・・
  =(∂ur/∂r)rx・rx+・・

Qα_1,α_2,…,α_n が非零の時,e^(α_1t),e^(α_2t),…,e^(α_nt)が一次独立を示す問題です

Let α_1,α_2,…,α_n be distinct numbers, ≠0. Show that the functions
e^(α_1t),e^(α_2t),…,e^(α_nt) are lineraly independent over the complex numbers.
[Hint: Suppose we have a linear relation
c_1e^(α_1t)+c_2e^(α_2t)+…+c_ne^(α_nt)=0
with constants c_i,valid for all t. If not all c_i are 0,without loss of generality,we may assume that none of them is 0.Differentiate the above relation n-1 times. You get a system of linear equations. The determinant of its coefficients must be zero.(Why?) Get a contradiction from this.]

と言うe^(α_1t),e^(α_2t),…,e^(α_nt)が一次独立を示す問題です。
(もし,c_iの一つでも非零なら全c_iも非零である事を使ってよいようです)
n-1回微分して得られる一次連立方程式の係数行列の行列式は

とりあえずn-1回微分してみましたらその係数行列の行列式が0でなければならない事から
矛盾を引き出せと述べてあります。

係数行列Aは
A:=
(c_1,c_2,…,c_n)
(c_1α_1,c_2α_2,…,c_2α_n)
(c_1α_1^2,c_2α_2^2,…,c_nα_n^2)
:
(c_1α_1^(n-1),c_2α_2^(n-1),…,c_nα_n^(n-1))

と書けると思います。

そして,その一次連立方程式は
At^(e^α_1t,e^α_2t,…,e^α_nt)=0
と書けます。
(但しtは転置行列を表す)

このdet(A)=0でなければならないのは何故なのでしょうか?

そしてdet(A)=0ならどうして矛盾なのでしょうか?

Let α_1,α_2,…,α_n be distinct numbers, ≠0. Show that the functions
e^(α_1t),e^(α_2t),…,e^(α_nt) are lineraly independent over the complex numbers.
[Hint: Suppose we have a linear relation
c_1e^(α_1t)+c_2e^(α_2t)+…+c_ne^(α_nt)=0
with constants c_i,valid for all t. If not all c_i are 0,without loss of generality,we may assume that none of them is 0.Differentiate the above relation n-1 times. You get a system of linear equations. The determinant of its coefficients must ...続きを読む

Aベストアンサー

この「ヒント」が・・・あんまりよくない気がする

・微分を繰り返して,方程式を作る
c_1e^(α_1t)+c_2e^(α_2t)+…+c_ne^(α_nt)=0
c_1α_1e^(α_1t)+c_2α_2e^(α_2t)+…+c_nα_ne^(α_nt)=0
・・・
c_1α_1^{n-1}e^(α_1t)+c_2α_2^{n-1}e^(α_2t)+…+c_nα_n^{n-1}e^(α_nt)=0
・t=0を代入する
c_1+c_2+…+c_n=0
c_1α_1+c_2α_2+…+c_nα_n=0
・・・
c_1α_1^{n-1}+c_2α_2^{n-1}+…+c_nα_n^{n-1}=0
これをcjについての連立方程式だとして整理すると,
係数の行列の行列式は
「ファンデルモンドの行列式」ってやつで
すぐ計算できる.
そうすると「αi」が全部違うから0ではない
つまり,係数が全部0になり一次独立.

ヒントの通りにするなら
without loss of generality,we may assume that none of them is 0.
の意味を理解して,やっぱりファンデルモンドで矛盾

この「ヒント」が・・・あんまりよくない気がする

・微分を繰り返して,方程式を作る
c_1e^(α_1t)+c_2e^(α_2t)+…+c_ne^(α_nt)=0
c_1α_1e^(α_1t)+c_2α_2e^(α_2t)+…+c_nα_ne^(α_nt)=0
・・・
c_1α_1^{n-1}e^(α_1t)+c_2α_2^{n-1}e^(α_2t)+…+c_nα_n^{n-1}e^(α_nt)=0
・t=0を代入する
c_1+c_2+…+c_n=0
c_1α_1+c_2α_2+…+c_nα_n=0
・・・
c_1α_1^{n-1}+c_2α_2^{n-1}+…+c_nα_n^{n-1}=0
これをcjについての連立方程式だとして整理すると,
係数の行列の行列式は
「ファンデルモンドの行列式」ってやつで
す...続きを読む

Qx^x^x^x^x^x^・・・・・^x  の一般的な表し方

タイトル通りになってしまいますが、

x^x^x^x^x^x^・・・・・・^x (xはn個ある)

を一般的に表すことができる式というのはあるものなのでしょうか?

grapesで
y=x
y=x^x
y=x^x^x
y=x^x^x^x
 ・
 ・
 ・

のグラフを描いてみましたところ、どうやらnが偶数か奇数かによって2種類のグラフに近づいているように見えたのです。どなたか一般的な記述の仕方をご存知の方、宜しくお願いしますm(_ _)m

Aベストアンサー

x^x^xはx^(x^x)と表すべきです。同様にx^x^x^xではなく、x^(x^(x^x))です。
これは(x^x)^xとx^(x^x)が等しくないから区別する必要があるわけです。
たとえば(3^3)^3=729なのに対し、3^(3^3)=19683です。
一般に後者の方が圧倒的に大きくなります。

さて、話をx^(x^(x^(…)))に戻しましょう。
これは定義域を[0,1]に限れば、確かにおっしゃるとおり偶数と奇数で
関数の形状が分かれます。これはx^x→1(x→0)が関係しています。
x^(x^x)は不定形の極限ではなく、単に0^1=0に収束します。
偶数個のときは不定形の極限が現れるわけです。
数学的帰納法とたとえばlogを取って極限計算をされてみたらよいでしょう。

さて問題になっている、x^(x^x)などの表記ですが、
これにはクヌースのタワー表記(1976)というものが知られています。
たとえば
x^(x^x)=x↑↑3
x^(x^(x^(x^(x^x))))=x↑↑6
などと表示します。参考URL(wiki)などをごらんください。
wikiによるとx^^3や、x^^6などとも表示するようです。

参考URL:http://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%8C%E3%83%BC%E3%82%B9%E3%81%AE%E7%9F%A2%E5%8D%B0%E8%A1%A8%E8%A8%98

x^x^xはx^(x^x)と表すべきです。同様にx^x^x^xではなく、x^(x^(x^x))です。
これは(x^x)^xとx^(x^x)が等しくないから区別する必要があるわけです。
たとえば(3^3)^3=729なのに対し、3^(3^3)=19683です。
一般に後者の方が圧倒的に大きくなります。

さて、話をx^(x^(x^(…)))に戻しましょう。
これは定義域を[0,1]に限れば、確かにおっしゃるとおり偶数と奇数で
関数の形状が分かれます。これはx^x→1(x→0)が関係しています。
x^(x^x)は不定形の極限ではなく、単に0^1=0に収束します。
偶数個のときは不定...続きを読む

Qlim[h→0]{g(h)+g(2h)+g(-3h)-3g(0)}/h^2=7g''(0)の証明

gを(-1,1)上で定義されたc~2-級関数とする。gのテイラー展開あるいはロピタルの定理を用いて
lim[h→0]{g(h)+g(2h)+g(-3h)-3g(0)}/h^2=7g''(0)
を示せ。(ただしロピタルの定理を用いる際は、定理の仮定を満たしていると確認すること)

という問題の、解き方あるいはヒントを教えてください。

Aベストアンサー

g(h)をh=0のまわりでテイラー展開すると
  g(h) = g(0) +h*g'(0) +((h^2)/2)*g''(0) +R1(h)
g(2h)をh=0のまわりでテイラー展開すると
  g(2h) = g(0) +2h*g'(0) +(2h^2)*g''(0) +R2(h)

同様にg(-3h)も展開して、左辺を実際に計算してみれば示せます。


ロピタルの定理はあまり好きではないが、使うとすれば、左辺が不定形になっていることを確かめてから実際にロピタルの定理を適用するだけ。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報