重要なお知らせ

「教えて! goo」は2025年9月17日(水)をもちまして、サービスを終了いたします。詳細はこちら>

電子書籍の厳選無料作品が豊富!

ᅫ�^��ᅫ�\ᅫ�^ᅫ�zᅫ�^��ᅫ�\

の検索結果 (3,521件 1〜 20 件を表示)

寝たきりになってしまった愛犬

…愛犬のM・ダックスが脳腫瘍になり、手の施しようがなく自宅で介護しております。 長くて2ヶ月・・突然の余命宣告から1ヶ月半・・ 衰弱してはいますが食事も何とか食べ、薬も嫌がらず...…

解決

zを複素数とする。z,z²,z³,…,zⁿが複素平面で正n角形を作るとき、zⁿ=1でしょうか?z,z

…zを複素数とする。z,z²,z³,…,zⁿが複素平面で正n角形を作るとき、zⁿ=1でしょうか?z,z²,z³,…,zⁿはこの順に並んでいるとは限りません。…

解決

複素数zはz^7=1かつz≠1を満たす。 zの偏角をθとするとき、 (1)z+z^2+z^3+z^4

…複素数zはz^7=1かつz≠1を満たす。 zの偏角をθとするとき、 (1)z+z^2+z^3+z^4+z^5+z^6は? (2)cosθ+cos2θ+cos4θは? 解き方を教えてください。…

解決

f(z)=tan(z)のマクローリン展開に関して、 「sin(z)/cos(z) を珪砂してください

…f(z)=tan(z)のマクローリン展開に関して、 「sin(z)/cos(z) を珪砂してください。 f(z)=(1/z)*{1 - z^2/3! + z^4/5! - ...}/{1 - z^2/2! + z^4/4! - ...} ですから、 z*f(z)={1 - z^2/3! + z^4/5! - ...}/{1 - z^2/2! + z^4/4! - ...} =c[0...…

締切

過去に 「ii) f(z)=1/(z^2-1) r>2 C={z||z-1|=r} の時は ローラン

…過去に 「ii) f(z)=1/(z^2-1) r>2 C={z||z-1|=r} の時は ローラン展開は f(z)=Σ_{n=-∞~∞}a(n)(z-1)^n a(n)={1/(2πi)}∫_{C}{f(z)/(z-1)^(n+1)}dz n≧-1 n+1≧0 g(z)=f(z)/(z-1)^(n+1) a(n)={1/(2πi)}∫_{C}g(z)dz |z-1|…

締切

「tan(z)の特異点z=π/2は1位の極なので g(z)=tan(z)/(z-π/2)^(n+1)

…「tan(z)の特異点z=π/2は1位の極なので g(z)=tan(z)/(z-π/2)^(n+1)は(n+2)位の極となります。 よって a(n) ={1/(2πi)}∫_{C}{tan(z)/(z-π/2)^(n+1)}dz ={1/(2πi)}2πires(tan(z)/(z-π/2)^(n+1),π/2) ={1/(n+1)!}lim_{z→π/2}(d/dz)^...…

締切

g(z)=tan(z)/(z-π/2)^(n+1)のローラン展開 を導く為に、 a(n) =res(

…g(z)=tan(z)/(z-π/2)^(n+1)のローラン展開 を導く為に、 a(n) =res(g(z),π/2) =res(tan(z)/(z-π/2)^(n+1),π/2) ={1/(2πi)}∫{|z-π/2|=r}tan(z)/(z-π/2)^(n+1)dz などの積分が難しくなる積分公式を使わずに、 a(n) ={1/(n+1)!}lim...…

締切

f(z)=1/(z^2-1)の時、 i) 0

…f(z)=1/(z^2-1)の時、 i) 0…

解決

数学の質問です。 (x-y-z+w)(x-y+z-w)において s=x-z t=z-wとおくと (s

…数学の質問です。 (x-y-z+w)(x-y+z-w)において s=x-z t=z-wとおくと (s-t)(s+t) となるそうなのですが、右のカッコ内には-z+wがあるのにどのように置き換えたのかが分かりません。 解説お願い致しま...…

解決

過去に保存したメモに 「g(z)は|z-π/2|

…過去に保存したメモに 「g(z)は|z-π/2|…

締切

a(n)=1/(n+1)! lim[z->π/2](d/dz)^(n+1)(z-π/2)tan(z)

…a(n)=1/(n+1)! lim[z->π/2](d/dz)^(n+1)(z-π/2)tan(z)の式においてn=1の時のa(1)の値はいくつでしょうか?…

締切

画像において、質問がございます。 ①,何のためにg(z)=(z-π/2)tan(z)を作ったのでしょ

…画像において、質問がございます。 ①,何のためにg(z)=(z-π/2)tan(z)を作ったのでしょうか? g(z)=tan(z)/(z-1/2)^(n+1)ではなかったのでしょうか? ②,なぜ、g(z)=(z-π/2)tan(z)ではなく、g(z)=(z-π/2)tan(z)...…

締切

今更で申し訳ないのですが、疑問が2つあります。 ①g(z)=tan(z)(z-π/2)でz→π/2(

…今更で申し訳ないのですが、疑問が2つあります。 ①g(z)=tan(z)(z-π/2)でz→π/2(z=π/2)の時は、g(z)の式は収束する為、コーシーの積分定理によってa(n)は0になると思ったのですが、なぜ画像のよ...…

締切

質問1, a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-

…質問1, a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)tan(z)] に含まれるg(z)=(z-π/2)tan(z)の留数(residue)を求めるために、 g(z)をテイラー展開します。 展開した式から(z-π/2)の係数を取り出します。 取り...…

締切

「f(z)=1/(z^2-1)に関して ローラン展開を使う場合、マクローリン展開を使う場合、テイラー

…「f(z)=1/(z^2-1)に関して ローラン展開を使う場合、マクローリン展開を使う場合、テイラー展開を使う場合で、 それぞれ、zが0.001の時の近侍値を求めるまでの過程の計算を教えて下さい。」 ...…

解決

a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)t

…a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)tan(z)] に含まれるg(z)=(z-π/2)tan(z)の留数(residue)を求めるために、 g(z)をテイラー展開します。 展開した式から(z-π/2)の係数を取り出します。 取り出し...…

締切

「 f(z)=Σ_{n=-∞~∞}a(n)(z-a)^n(ローラン展開の式)より

…「 f(z)=Σ_{n=-∞~∞}a(n)(z-a)^n(ローラン展開の式)より、マクローリン展開はnが正の範囲でしか展開できないため、 n=0~∞として、またa=0(aは近似したい位置のx座標であり、このx座標が0の時、...…

解決

f(z)=(z^2-1)のテイラー展開とマクローリン展開とローラン展開について質問があります。 質問

…f(z)=(z^2-1)のテイラー展開とマクローリン展開とローラン展開について質問があります。 質問1, f(z)=(z^2-1)のテイラー展開とマクローリン展開の導き方を詳しい過程の計算を用いて教えて頂...…

締切

2024.5.8 08:24の質問の 2024.5.11 16:58の解答の 「f(z)がz=aでj

…2024.5.8 08:24の質問の 2024.5.11 16:58の解答の 「f(z)がz=aでj位の極をもつとき f(z)=Σ{n=-j~∞}a(n)(z-a)^n g0(z)=f(z)(z-a)^j a(n)={1/(n+j)!}lim[z->a](d/dz)^(n+j)f(z)(z-a)^j a(n)=res(f(z)/(z-a)^(n+1),a) gn(z)=f(z)/(z-a)^(n+1) と...…

締切

(a、bは定数) z、x、yという変数があったときz=ax+byという式があったら微分形は(δz/δ

…(a、bは定数) z、x、yという変数があったときz=ax+byという式があったら微分形は(δz/δx)y=a、(δz/δy)x=b でいいですか? 全微分形式で書くとdz= (δz/δx)y.dx+ (δz/δy)xdy ですか? 全微分形式と微分...…

解決

検索で見つからないときは質問してみよう!

Q質問する(無料)