過去に
「ii)
f(z)=1/(z^2-1)
r>2
C={z||z-1|=r}
の時は
ローラン展開は
f(z)=Σ_{n=-∞~∞}a(n)(z-1)^n
a(n)={1/(2πi)}∫_{C}{f(z)/(z-1)^(n+1)}dz
n≧-1
n+1≧0
g(z)=f(z)/(z-1)^(n+1)
a(n)={1/(2πi)}∫_{C}g(z)dz
|z-1|<rで
z=1でn+2位の極
z=-1で1位の極
の2つの極を持つから
留数定理から
a(n)=Res(g(z),-1)+Res(g(z),1)
Res(g(z),-1)
=lim_{z→-1}{1/(z-1)^(n+2)}
=-1/2^(n+2)
Res(g(z),1)
={1/(n+1)!}lim_{z→1}(d/dz)^(n+1){1/(z+1)}
=-1/(-2)^(n+2)
a(n)=1/(-2)^(n+2)-1/(-2)^(n+2)=0
∴
a(n)=0」
とmtrajcp様から教えて頂いたのですが、
「Res(g(z),-1)
=lim_{z→-1}{1/(z-1)^(n+2)}
=-1/2^(n+2)」の
「-1/2^(n+2)」は「1/(-2)^(n+2)」とも置けるのでしょうか?
どうかよろしくお願い致します。
A 回答 (5件)
- 最新から表示
- 回答順に表示
No.5
- 回答日時:
> ii)のn≦-2の時に関してはわかりました。
ほんとうかwwwww
であれば、f(z) のローラ展開の係数の一般項である a_n を求めるのに、n≧-1 の場合を考える必要など、まったくないことがわかったはずだが。
以下、No.4 の n≦-2 の場合の説明を、もう少し丁寧に説明したつもり。
出血大サービスwwwwwwwwwwwwwwwwwww
https://imepic.jp/20240425/278390
No.4
- 回答日時:
訂正します
ii)
f(z)=1/(z^2-1)
r>2
C={z||z-1|=r}
の時は
ローラン展開は
f(z)=Σ_{n=-∞~∞}a(n)(z-1)^n
a(n)={1/(2πi)}∫_{C}{f(z)/(z-1)^(n+1)}dz
n≧-1 のとき
n+1≧0
g(z)=f(z)/(z-1)^(n+1)
a(n)={1/(2πi)}∫_{C}g(z)dz
|z-1|<rで
z=1でn+2位の極
z=-1で1位の極
の2つの極を持つから
留数定理から
a(n)=Res(g(z),-1)+Res(g(z),1)
Res(g(z),-1)
=lim_{z→-1}{1/(z-1)^(n+2)}
=1/(-2)^(n+2)
Res(g(z),1)
={1/(n+1)!}lim_{z→1}(d/dz)^(n+1){1/(z+1)}
=-1/(-2)^(n+2)
a(n)=1/(-2)^(n+2)-1/(-2)^(n+2)=0
∴
a(n)=0
n≦-2 のとき
0≦-n-2
g(z)
=f(z)/(z-1)^(n+1)
=f(z)(z-1)^(-n-1)
=(z-1)^(-n-2)/(z+1)
a(n)={1/(2πi)}∫_{C}g(z)dz
|z-1|<r で
z=-1だけで1位の極を持つから
留数定理から
a(n)
=Res(g(z),-1)
=lim_{z→-1}(z-1)^(-n-2)
=(-2)^(-n-2)
∴n≦-2のとき
a(n)=(-2)^(-n-2)
No.3
- 回答日時:
ii)
f(z)=1/(z^2-1)
r>2
C={z||z-1|=r}
の時は
ローラン展開は
f(z)=Σ_{n=-∞~∞}a(n)(z-1)^n
a(n)={1/(2πi)}∫_{C}{f(z)/(z-1)^(n+1)}dz
n≧-1 のとき
…(省略)
a(n)=0
n≦-2 のとき
0≦-n-2
g(z)
=f(z)/(z-1)^(n+1)
=f(z)(z-1)^(-n-1)
=(z-1)^(-n-2)/(z+1)
a(n)={1/(2πi)}∫_{C}g(z)dz
|z-1|<r で
z=-1だけで1位の極を持つから
留数定理から
a(n)
=Res(g(z),-1)
=lim_{z→-1}(z-1)^(-n-2)
=(-2)^(-n-2)
∴n≦-2のとき
a(n)=(-2)^(-n-2)
ありがとうございます。
ii)のn≦-2の時に関してはわかりました。
ii)のn≧-1の時に関して質問があります。
ii)のn≧-1の時、
「Res(g(z),-1)
=lim_{z→-1}{1/(z-1)^(n+2)}
=-1/2^(n+2)
Res(g(z),1)
={1/(n+1)!}lim_{z→1}(d/dz)^(n+1){1/(z+1)}
=-1/(-2)^(n+2)
a(n)=1/(-2)^(n+2)-1/(-2)^(n+2)=0
∴
a(n)=0」
との事ですが
Res(g(z),-1)
=lim_{z→-1}{1/(z-1)^(n+2)}
=-1/2^(n+2)の計算は正しくは
Res(g(z),-1)
=lim_{z→-1}{1/(z-1)^(n+2)}
=1/(-2)^(n+2)ではないのでしょうか?
そうでないと
a(n)=1/(-2)^(n+2)-1/(-2)^(n+2)=0と計算出来ないとおもうのですが、どうかよろしくお願い致します。
No.1
- 回答日時:
その引用、ほんとうに正確なのか?
> ii)
> f(z)=1/(z^2-1)
> r>2
> C={z||z-1|=r}
> f(z)=Σ_{n=-∞~∞}a(n)(z-1)^n
> a(n)={1/(2πi)}∫_{C}{f(z)/(z-1)^(n+1)}dz
この条件で 1/(z^2-1) を、z = 1 でローラン展開すれば
a(n) = (-2)^(n-2)
になるはずだが。
はい。
当時頂いた解答をそのままコピペしたので。
「 この条件で 1/(z^2-1) を、z = 1 でローラン展開すれば
a(n) = (-2)^(n-2)」
とは
「Res(g(z),1)
={1/(n+1)!}lim_{z→1}(d/dz)^(n+1){1/(z+1)}
=-1/(-2)^(n+2)」
の計算が間違えている事をいっているのでしょうか?
また、質問において、
「lim_{z→-1}{1/(z-1)^(n+2)}
=-1/2^(n+2)」
は間違っている気がします。
正しくはlim_{z→-1}{1/(z-1)^(n+2)}
=1/(-2)^(n+2)
だと思うのですが、いかがでしょうか?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 res(f(z),a)=1/(k-1)! lim[z->a](d/dz)^(k-1)(z-a)^kf 38 2022/08/24 02:41
- 数学 質問14 i)0<r<2かつn≧-1かつ(0<r<2を考慮した上で)r=lz-1lであるため、z=→ 26 2022/08/17 23:40
- 工学 res(f(z),a)=1/(k-1)! lim[z->a](d/dz)^(k-1)(z-a)^kf 1 2022/12/01 23:05
- 数学 画像のa(n)の式から 1/(n+1)! lim[z->a](d/dz)^(n+1)(z-π/2)t 23 2022/08/02 02:01
- 数学 2022.8.5 05:49に頂いた解答について質問があります。 「f(z)=1/(z^2-1) の 34 2022/08/08 07:49
- 数学 res(f(z),a)=1/(n-1)!lim[z->a](d/dz)^(n-1)(z-a)^nf( 5 2022/07/14 03:12
- 数学 tan(z)のローラン展開である tan(z)=a(-1)/(z-π/2)+a(0)+a(1)(z- 10 2023/11/09 13:11
- 数学 ローラン展開に関して質問があります。 「i) a=1 0<r<2 C={z||z-a|=r} f(z 22 2022/05/17 22:41
- 数学 res(f(z),a) =res(tan(z)/(z-π/2)^(n+1),π/2) ={1/(n+ 16 2022/07/27 10:01
- 工学 画像より、 n≧-1の時、 a(n)=(1/(2πi)∮_[C]{g(z)}dzと res(g(z) 1 2023/06/09 07:53
このQ&Aを見た人はこんなQ&Aも見ています
-
それもChatGPT!?と驚いた使用方法を教えてください
仕事やプライベートでも利用が浸透してきたChatGPTですが、こんなときに使うの!!?とびっくりしたり、これは画期的な有効活用だ!とうなった事例があれば教えてください!
-
あなたにとってのゴールデンタイムはいつですか?
一週間の中でもっともテンションが上がる「ゴールデンタイム」はいつですか? その逆で、一週間でもっとも落ち込むタイミングでも構いません。 よかったら教えて下さい!
-
とっておきの手土産を教えて
お呼ばれの時や、ちょっとした頂き物のお礼にと何かと必要なのに 自分のセレクトだとついマンネリ化してしまう手土産。 ¥5,000以内で手土産を用意するとしたらあなたは何を用意しますか??
-
ちょっと先の未来クイズ第5問
日本漢字能力検定協会が主催し、12月12日に発表される、2024年の「今年の漢字」に選ばれる漢字一文字は何でしょう?
-
うちのカレーにはこれが入ってる!って食材ありますか?
カレーって同じルーから作っても、家庭によって入っているものや味が微妙に違っていて面白いですよね! 「我が家のカレーにはこれが入ってるよ!」 という食材や調味料はありますか?
-
画像において、質問がございます。 ①,何のためにg(z)=(z-π/2)tan(z)を作ったのでしょ
数学
-
2024.4.22 09:12にした質問の2024.4.22 13:10に頂いた以下の解答について質
数学
-
数学を勉強すると論理的思考力が向上するという疑わしい主張が横行しているのはなぜですか?
数学
-
-
4
過去質『すべての自然数とすべての実数を1対1に対応させる方法:ファイナル』について
数学
-
5
確率の問題 数学と実生活と
数学
-
6
複素関数の積分計算についての初歩的な質問
数学
-
7
質問したい事が2つあります。 ①、以前に質問した2024.5.8 08:24の質問の2024.5.9
数学
-
8
画像の質問①〜③に答えてわかりやすく頂けるとありたいです。 どうかよろしくお願い致します。
数学
-
9
イプシロンエヌ論法についてですが、 写真の問題の青全部についてですが、なぜεの範囲を0<ε<2として
数学
-
10
以前にも質問させていただいたのですが、理解することができなかったので再度質問させていただきます。 写
数学
-
11
下の画像の中の三角形は正方形だ、と友達が言っていたのですが、その根拠のようなものはありますか? 二等
数学
-
12
2024.4.7 03:42の質問に対する2024.4.13 10:50の回答の画像より、 tan(
数学
-
13
「an=(n-1)/(n+1)のときlim[n→∞]an=1」となることをε-N論法を使って示せ。と
数学
-
14
こちらの式はtan(z)のローラン展開の式です。 tan(z) =a(-1)/(θ-π/2)+a(0
数学
-
15
おもいつかないから
数学
-
16
平面曲線
数学
-
17
f(z)=tan(z)のマクローリン展開に関して、 「sin(z)/cos(z) を珪砂してください
数学
-
18
1/z^2 を z=i の周りで展開しなさい。 この問題が分からないです。また複素関数論のいい教科書
数学
-
19
2024.5.8 08:24の質問の 2024.5.11 16:58の解答の 「f(z)がz=aでj
数学
-
20
2024.8.20 18:17にした質問の2024.8.29 21:01の解答について質問があります
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/2】 国民的アニメ『サザエさん』が打ち切りになった理由を教えてください
- ・ちょっと先の未来クイズ第5問
- ・【お題】ヒーローの謝罪会見
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
【遊びのピタゴラスイッチはな...
-
直角三角形じゃないのに三平方...
-
ほうべき(方巾)の定理について
-
複素関数と実関数のテーラー展...
-
畳み込み積分の応用問題につい...
-
modを使用した平方根の求め方
-
合同式と倍数
-
ピタゴラス数について。
-
大学の記述入試で外積は使えま...
-
lim[x→+∞](x^n/e^x)=0 の証明
-
∠A=90°,AB=4,AC=3の直角三角...
-
等号・不等号に関する定理の名...
-
オイラーの多面体定理の拡張
-
△ABCの∠Aの2等分線と辺BCとの交...
-
11の22乗を13で割った余り...
-
至上最難問の数学がとけた
-
4色定理と5人の王子様の解に...
-
AとBはn次正方行列とする。 積A...
-
十分性の確認について
-
二つの円での平行の証明
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
lim[x→+∞](x^n/e^x)=0 の証明
-
大学の記述入試で外積は使えま...
-
至上最難問の数学がとけた
-
ほうべき(方巾)の定理について
-
【遊びのピタゴラスイッチはな...
-
直角三角形じゃないのに三平方...
-
至急です! 数学で証明について...
-
相似比の答え方・・・
-
【線形代数】基底、dimVの求め方
-
パップスギュルダンの定理について
-
定理と法則の違い
-
二次合同式の解き方
-
ファルコンの定理は解かれまし...
-
△ABCの∠Aの2等分線と辺BCとの交...
-
「有限個の素イデアルしか持た...
-
実数の整列化について
-
高校の数学です。
-
オイラーの多面体定理の拡張
-
留数定理とコーシーの積分公式...
-
中学2年図形の証明についての質...
おすすめ情報