
過去に
「ii)
f(z)=1/(z^2-1)
r>2
C={z||z-1|=r}
の時は
ローラン展開は
f(z)=Σ_{n=-∞~∞}a(n)(z-1)^n
a(n)={1/(2πi)}∫_{C}{f(z)/(z-1)^(n+1)}dz
n≧-1
n+1≧0
g(z)=f(z)/(z-1)^(n+1)
a(n)={1/(2πi)}∫_{C}g(z)dz
|z-1|<rで
z=1でn+2位の極
z=-1で1位の極
の2つの極を持つから
留数定理から
a(n)=Res(g(z),-1)+Res(g(z),1)
Res(g(z),-1)
=lim_{z→-1}{1/(z-1)^(n+2)}
=-1/2^(n+2)
Res(g(z),1)
={1/(n+1)!}lim_{z→1}(d/dz)^(n+1){1/(z+1)}
=-1/(-2)^(n+2)
a(n)=1/(-2)^(n+2)-1/(-2)^(n+2)=0
∴
a(n)=0」
とmtrajcp様から教えて頂いたのですが、
「Res(g(z),-1)
=lim_{z→-1}{1/(z-1)^(n+2)}
=-1/2^(n+2)」の
「-1/2^(n+2)」は「1/(-2)^(n+2)」とも置けるのでしょうか?
どうかよろしくお願い致します。
A 回答 (5件)
- 最新から表示
- 回答順に表示
No.5
- 回答日時:
> ii)のn≦-2の時に関してはわかりました。
ほんとうかwwwww
であれば、f(z) のローラ展開の係数の一般項である a_n を求めるのに、n≧-1 の場合を考える必要など、まったくないことがわかったはずだが。
以下、No.4 の n≦-2 の場合の説明を、もう少し丁寧に説明したつもり。
出血大サービスwwwwwwwwwwwwwwwwwww
https://imepic.jp/20240425/278390
No.4
- 回答日時:
訂正します
ii)
f(z)=1/(z^2-1)
r>2
C={z||z-1|=r}
の時は
ローラン展開は
f(z)=Σ_{n=-∞~∞}a(n)(z-1)^n
a(n)={1/(2πi)}∫_{C}{f(z)/(z-1)^(n+1)}dz
n≧-1 のとき
n+1≧0
g(z)=f(z)/(z-1)^(n+1)
a(n)={1/(2πi)}∫_{C}g(z)dz
|z-1|<rで
z=1でn+2位の極
z=-1で1位の極
の2つの極を持つから
留数定理から
a(n)=Res(g(z),-1)+Res(g(z),1)
Res(g(z),-1)
=lim_{z→-1}{1/(z-1)^(n+2)}
=1/(-2)^(n+2)
Res(g(z),1)
={1/(n+1)!}lim_{z→1}(d/dz)^(n+1){1/(z+1)}
=-1/(-2)^(n+2)
a(n)=1/(-2)^(n+2)-1/(-2)^(n+2)=0
∴
a(n)=0
n≦-2 のとき
0≦-n-2
g(z)
=f(z)/(z-1)^(n+1)
=f(z)(z-1)^(-n-1)
=(z-1)^(-n-2)/(z+1)
a(n)={1/(2πi)}∫_{C}g(z)dz
|z-1|<r で
z=-1だけで1位の極を持つから
留数定理から
a(n)
=Res(g(z),-1)
=lim_{z→-1}(z-1)^(-n-2)
=(-2)^(-n-2)
∴n≦-2のとき
a(n)=(-2)^(-n-2)
No.3
- 回答日時:
ii)
f(z)=1/(z^2-1)
r>2
C={z||z-1|=r}
の時は
ローラン展開は
f(z)=Σ_{n=-∞~∞}a(n)(z-1)^n
a(n)={1/(2πi)}∫_{C}{f(z)/(z-1)^(n+1)}dz
n≧-1 のとき
…(省略)
a(n)=0
n≦-2 のとき
0≦-n-2
g(z)
=f(z)/(z-1)^(n+1)
=f(z)(z-1)^(-n-1)
=(z-1)^(-n-2)/(z+1)
a(n)={1/(2πi)}∫_{C}g(z)dz
|z-1|<r で
z=-1だけで1位の極を持つから
留数定理から
a(n)
=Res(g(z),-1)
=lim_{z→-1}(z-1)^(-n-2)
=(-2)^(-n-2)
∴n≦-2のとき
a(n)=(-2)^(-n-2)
ありがとうございます。
ii)のn≦-2の時に関してはわかりました。
ii)のn≧-1の時に関して質問があります。
ii)のn≧-1の時、
「Res(g(z),-1)
=lim_{z→-1}{1/(z-1)^(n+2)}
=-1/2^(n+2)
Res(g(z),1)
={1/(n+1)!}lim_{z→1}(d/dz)^(n+1){1/(z+1)}
=-1/(-2)^(n+2)
a(n)=1/(-2)^(n+2)-1/(-2)^(n+2)=0
∴
a(n)=0」
との事ですが
Res(g(z),-1)
=lim_{z→-1}{1/(z-1)^(n+2)}
=-1/2^(n+2)の計算は正しくは
Res(g(z),-1)
=lim_{z→-1}{1/(z-1)^(n+2)}
=1/(-2)^(n+2)ではないのでしょうか?
そうでないと
a(n)=1/(-2)^(n+2)-1/(-2)^(n+2)=0と計算出来ないとおもうのですが、どうかよろしくお願い致します。
No.1
- 回答日時:
その引用、ほんとうに正確なのか?
> ii)
> f(z)=1/(z^2-1)
> r>2
> C={z||z-1|=r}
> f(z)=Σ_{n=-∞~∞}a(n)(z-1)^n
> a(n)={1/(2πi)}∫_{C}{f(z)/(z-1)^(n+1)}dz
この条件で 1/(z^2-1) を、z = 1 でローラン展開すれば
a(n) = (-2)^(n-2)
になるはずだが。
はい。
当時頂いた解答をそのままコピペしたので。
「 この条件で 1/(z^2-1) を、z = 1 でローラン展開すれば
a(n) = (-2)^(n-2)」
とは
「Res(g(z),1)
={1/(n+1)!}lim_{z→1}(d/dz)^(n+1){1/(z+1)}
=-1/(-2)^(n+2)」
の計算が間違えている事をいっているのでしょうか?
また、質問において、
「lim_{z→-1}{1/(z-1)^(n+2)}
=-1/2^(n+2)」
は間違っている気がします。
正しくはlim_{z→-1}{1/(z-1)^(n+2)}
=1/(-2)^(n+2)
だと思うのですが、いかがでしょうか?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 res(f(z),a)=1/(k-1)! lim[z->a](d/dz)^(k-1)(z-a)^kf 38 2022/08/24 02:41
- 数学 質問14 i)0<r<2かつn≧-1かつ(0<r<2を考慮した上で)r=lz-1lであるため、z=→ 26 2022/08/17 23:40
- 工学 res(f(z),a)=1/(k-1)! lim[z->a](d/dz)^(k-1)(z-a)^kf 1 2022/12/01 23:05
- 数学 画像のa(n)の式から 1/(n+1)! lim[z->a](d/dz)^(n+1)(z-π/2)t 23 2022/08/02 02:01
- 数学 2022.8.5 05:49に頂いた解答について質問があります。 「f(z)=1/(z^2-1) の 34 2022/08/08 07:49
- 数学 res(f(z),a)=1/(n-1)!lim[z->a](d/dz)^(n-1)(z-a)^nf( 5 2022/07/14 03:12
- 数学 tan(z)のローラン展開である tan(z)=a(-1)/(z-π/2)+a(0)+a(1)(z- 10 2023/11/09 13:11
- 数学 ローラン展開に関して質問があります。 「i) a=1 0<r<2 C={z||z-a|=r} f(z 22 2022/05/17 22:41
- 数学 res(f(z),a) =res(tan(z)/(z-π/2)^(n+1),π/2) ={1/(n+ 16 2022/07/27 10:01
- 工学 画像より、 n≧-1の時、 a(n)=(1/(2πi)∮_[C]{g(z)}dzと res(g(z) 1 2023/06/09 07:53
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
「メネラウスの定理」、学校で...
-
数学のおすすめの勉強法について。
-
数学で定理、公理、定義の違い...
-
f(x)が(x-a)(x-b)で割り切れる⇔...
-
【遊びのピタゴラスイッチはな...
-
二次合同式の解き方
-
相似比の答え方・・・
-
定理と公式は、どう違いますか?
-
等角写像 画像に、ヤコビアンが...
-
至上最難問の数学がとけた
-
数A nは自然数とする。n , n+2 ...
-
ロピタルの定理
-
数学の定理は覆らない?
-
代数学Ⅲ体とガロア理論 桂利行 ...
-
方べきの定理について
-
二つの円での平行の証明
-
連立合同式について
-
大学の記述入試で外積は使えま...
-
何時間 何分 何秒を記号で表...
-
鋼材について
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
【遊びのピタゴラスイッチはな...
-
至上最難問の数学がとけた
-
直角三角形じゃないのに三平方...
-
大学の記述入試で外積は使えま...
-
パップスギュルダンの定理について
-
ファルコンの定理は解かれまし...
-
定理と公式は、どう違いますか?
-
lim[x→+∞](x^n/e^x)=0 の証明
-
至急です! 数学で証明について...
-
ピタゴラス数について。
-
ほうべき(方巾)の定理について
-
二次合同式の解き方
-
aは自然数とする。a+5は4の倍...
-
完全数はどうして「完全」と名...
-
合同式の変形
-
実数の整列化について
-
数A nは自然数とする。n , n+2 ...
-
微分形式,微分幾何学の参考書
-
modを使用した平方根の求め方
-
4.6.8で割るとあまりはそれぞれ...
おすすめ情報