
No.7ベストアンサー
- 回答日時:
(1)の問題、よく見ると “1+” で始まってないんだね。
z⁷=1
z⁷-1=0
(z-1)(1+z+z²+z³+z⁴+z⁵+z⁶)=0
z≠1 なので
1+z+z²+z³+z⁴+z⁵+z⁶=0
z+z²+z³+z⁴+z⁵+z⁶=-1
(2)
cosθ+cos2θ+cos4θ=x
とおくと
cos7θ=1 となることから
cos6θ=cosθ
cos5θ=cos2θ
cos3θ=cos4θ
cos6θ+cos5θ+cos3θ=x
cosθ+cos2θ+cos3θ+cos4θ+cos5θ+cos6θ=2x
この式は (1) の式の実数部であるから
2x=-1
x=-1/2
No.6
- 回答日時:
(1)の答えを0と書きましたが
よく考えてみるとこれは間違いです。
答えは-1だと思います。
(2)の答えは(1)の答えの1/2です。ド・モアブルの定理と高校で習う三角関数の公式を利用してそれを示すことが出来る筈です。
No.5
- 回答日時:
(1) について #1 と #2 は矛盾しているので, 少なくとも一方は間違ってるんだけどね>#3. もちろん θ は π/3 でも 2π/3 でも 4π/3 でもない.
(2) は #2 の方針でいける.
No.4
- 回答日時:
ANo.3です。
すみません、訂正があります。
1+z^3=0だと、
z^3=-1
z^6=(z^3)^2=(-1)^2=1
z^7=z^6 * z=z
となり、z^7=1かつz≠1を満たさなくなるため、1+z^3=0は不適になります。
よって、
cosθ+cos2θ+cos4θ=-3/2(θ=2π/3またはθ=4π/3のとき)
になります。
No.3
- 回答日時:
(1)についてはNo.1、No.2の方の回答の通りですので省略します。
(2)について書きます。
z+z^2+z^3+z^4+z^5+z^6=0
z(1+z+z^2)+z^4(1+z+z^2)=0
(z+z^4)(1+z+z^2)=0
z(1+z^3)(1+z+z^2)=0
z=cosθ+i sinθ(0≦θ<2π)とすると、
z^2=(cosθ+i sinθ)^2
=(cosθ)^2-(sinθ)^2 + 2i sinθcosθ
=cos2θ+i sin2θ
z^3=z^2 * z
=(cos2θ+i sin2θ)(cosθ+i sinθ)
=cos2θcosθ-sin2θsinθ+i(cos2θsinθ+sin2θcosθ)
=cos3θ+i sin3θ
ここで、1+z^3=0とすると、
1+cos3θ+i sin3θ=0
cos3θ=-1
sin3θ=0
3θ=π
θ=π/3で条件を満たす。よって、
cosθ+cos2θ+cos4θ
=cos(π/3)+cos(2π/3)+cos(4π/3)
=(1/2)+(-1/2)+(-1/2)
=-1/2
同様に、1+z+z^2=0とすると、
1+cosθ+i sinθ+cos2θ+i sin2θ=0
1+cosθ+cos2θ+i(sinθ+sin2θ)=0
cosθ+cos2θ=-1
sinθ+sin2θ=0
cosθ+cos2θ+1=0
cosθ+(cosθ)^2-(sinθ)^2+1=0
2(cosθ)^2 + cosθ=0
cosθ(2cosθ+1)=0
cosθ=0と仮定すると、
θ=π/2, 3π/2
θ=π/2のとき、sinθ+sin2θ=sin(π/2)+sinπ=1となり不適。
θ=3π/2のとき、sinθ+sin2θ=sin(3π/2)+sin3π=-1となり不適。
2cosθ+1=0と仮定すると、
cosθ=-1/2
θ=2π/3, 4π/3
θ=2π/3のとき、sinθ+sin2θ=sin(2π/3)+sin(4π/3)=0で条件を満たす。よって、
cosθ+cos2θ+cos4θ
=cos(2π/3)+cos(4π/3)+cos(8π/3)
=(-1/2)+(-1/2)+(-1/2)
=-3/2
θ=4π/3のとき、sinθ+sin2θ=sin(4π/3)+sin(8π/3)=0で条件を満たす。よって、
cosθ+cos2θ+cos4θ
=cos(4π/3)+cos(8π/3)+cos(16π/3)
=(-1/2)+(-1/2)+(-1/2)
=-3/2
ゆえに、
cosθ+cos2θ+cos4θ=-1/2(θ=π/3のとき)
cosθ+cos2θ+cos4θ=-3/2(θ=2π/3またはθ=4π/3のとき)
No.2
- 回答日時:
問題の条件より
z^7 -1 = 0
である。
左辺は因数分解出来て、その結果とz≠1を踏まえると(1)の答えは0
(2)はきっちりかっちりと解いた訳ではないけれど(1)の答えと4θ=7θ-3θ,2θ=7θ-5θ,θ=7θ-6θであること、7θ=2nπであること、を利用すれば解けるのではないのかなぁ、と思います。
No.1
- 回答日時:
とりあえず(1)は、
z⁷=1
z⁷-1=0
因数分解して、
(z-1)(z⁶+z⁵+z⁴+z³+z²+z+1)=0
z≠1より、z⁶+z⁵+z⁴+z³+z²+z+1=0
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学の質問です。 0≦θ<2πのとき...
-
y=cos³Xのグラフの書き方を教...
-
cos(θ-π/2)=cos(π/2-θ)になるの...
-
はさみうちの原理
-
cos2x=cosx ってなにを聞かれ...
-
三角関数
-
(cosθ+isinθ)^2=cos2θ+isin2θ ...
-
加法定理
-
e^2xのマクローリン展開を求め...
-
X5乗-1=0 の因数分解の仕方...
-
テーラー展開で数値を求めたい...
-
角の三等分線の長さ
-
1/ a + bcosx (a,b>0)の 不定積...
-
Σは二乗されないのですか?
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
大学入試の数学の質問です
-
弓形の高さ
-
(4-x^2)^(3/2) の積分はどーや...
-
数学Ⅲ 極形式質問 arg zの計算...
-
数学についての質問です △ABCで...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^2xのマクローリン展開を求め...
-
1+cosθをみると何か変形ができ...
-
eの2πi乗は1になってしまうんで...
-
数3です。 第n項が次の式で表さ...
-
三角関数
-
cos(2/5)πの値は?
-
数学の質問です。 0≦θ<2πのとき...
-
長方形窓の立体角投射率
-
数列の極限でわからない問題
-
高校数学 三角関数
-
双極子モーメントの別解
-
cos2x=cosx ってなにを聞かれ...
-
フーリエ級数|cosx|
-
三角関数
-
cos(arcsinx) = sqrt(1-xx)
-
三角関数で、
-
加法定理
-
cos^3tを微分するときはどうや...
-
cos2θ−3cosθ+ 2≧0の不等式を解...
-
不定積分∫dx/√(1-x^2)=arcsin(x...
おすすめ情報