No.2ベストアンサー
- 回答日時:
cosX やsinXの値を考えるときはいつも原点を中心とする半径1の単位円周上の点の座標を考えるとよく分かります。
cosXはX座標ですからX=nπとおいて
n=1,2,3,4,5,6、と代入すると
nが奇数のときは、円周上の点はいつも(-1,0)から cosnπ=-1,
nが偶数のときは、円周上の点はいつも(1,0)から cosnπ=1,
が視覚的に確認できます。
私はいつもこの方法でやっているということです
ちなみにsin(nπ)=0も確認できると思います
No.1
- 回答日時:
nが偶数の場合と奇数の場合に場合分けして考えてみてください。
nが偶数の場合
n=2mとおいて
(-1)^n=(-1)^(2m)=((-1)^2)^m=1^m=1 …(1)
cos(nπ)=cos(2mπ)=cos(0)=1
成立
nが奇数の場合
n=2m+1とおいて
(-1)^n=(-1)^(2m+1)=-(-1)^(2m)=-1 ((1)より)
cos(nπ)=cos(2m+1)π=cos(2mπ+π)=cos(π)=-1
成立
で証明おわり
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
好きな人を振り向かせるためにしたこと
大好きな人と会話のきっかけを少しでも作りたい、意識してもらいたい…! 振り向かせるためにどんなことをしたことがありますか?
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
最強の防寒、あったか術を教えてください!
とっても寒がりなのですが、冬に皆さんがされている最強の防寒、あったか術が知りたいです!
-
【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
「出身中学と出身高校が混ざったような校舎にいる夢を見る」「まぶたがピクピクしてるので鏡で確認しようとしたらピクピクが止まってしまう」など、 これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
数3のcosnπについて
数学
-
フーリエ級数の問題で、f(x)は関数|x|(-π<x<π)で同期2πで
数学
-
どんな整数であってもsin(nπ)=0となるのはなぜですか?
数学
-
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
e^2xのマクローリン展開を求め...
-
cosθやsinθを何乗もしたものを...
-
eの2πi乗は1になってしまうんで...
-
積分
-
cos(2/5)πの値は?
-
∮sinθcos^2θを置換積分なしで =...
-
cos2x=cosx ってなにを聞かれ...
-
0 ≦θ ≦πのとき cos(2θ+π/3)=cos...
-
1/ a + bcosx (a,b>0)の 不定積...
-
X5乗-1=0 の因数分解の仕方...
-
三角関数
-
数学の合成の問題
-
複素数zはz^7=1かつz≠1を満たす...
-
積分
-
数学の質問です。 0≦θ<2πのとき...
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
弓形の高さ
-
cos60°が、なぜ2分の1になるの...
-
【数学】コサインシータって何...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
eの2πi乗は1になってしまうんで...
-
1+cosθをみると何か変形ができ...
-
cos(2/5)πの値は?
-
数学の質問です。 0≦θ<2πのとき...
-
フーリエ級数|cosx|
-
△ABCにおいてAB=4、BC=6、CA=5...
-
cos2x=cosx ってなにを聞かれ...
-
e^2xのマクローリン展開を求め...
-
複素数の問題について
-
三角関数で、
-
角の三等分線の長さ
-
積分
-
0 ≦θ ≦πのとき cos(2θ+π/3)=cos...
-
cosθやsinθを何乗もしたものを...
-
二等辺三角形においての余弦定...
-
cos60°が、なぜ2分の1になるの...
-
高校数学 三角関数
-
1/ a + bcosx (a,b>0)の 不定積...
-
長方形窓の立体角投射率
-
複素数zはz^7=1かつz≠1を満たす...
おすすめ情報