出産前後の痔にはご注意!

媒介変数表示の2重積分の問題です

曲線C
x=θ+sinθ
y=1+cosθ
(-π≦θ≦π)

Cとx軸で囲まれる領域をDとすると 面積 ∬D dxdy についてです。

式がサイクロイドと似てたので、dy/dxをθで書き直したりしましたが、解答には結びつきませんでした・・。
これはまずyをxの関数としてあらわす必要があるのでしょうか?
その計算もちょっとできないままなのですが・・。どうかそれも含めてご教示お願いします・・。

A 回答 (2件)

>これはまずyをxの関数としてあらわす必要があるのでしょうか?


表す必要はありません。

>面積 ∬D dxdy

S=∬D dxdy
=∫[-π,π] {∫[0,y(θ)} 1 dy}dx
=∫[-π,π] y(θ)(dx/dθ)dθ

ここで y=y(θ)=1+cosθ
 dx/dθ=(θ+sinθ)'=1+cosθ
を代入すれば積分は媒介変数θだけの積分になりますね。
つまり

S=∫[-π,π] (1+cosθ)^2 dθ

偶関数の積分なので区間[-π,0}の積分と区間[0,π}の積分は等しくなるので
S=2∫[0,π] (1+cosθ)^2 dθ
で計算すれば良いです。

被積分関数は次のように変形できるので項別積分すれば良いでしょう。
(1+cosθ)^2=1+2cosθ+cos^2θ=1+2cosθ+(1/2)(1+cos2θ)
=(3/2)+2cosθ+(1/2)cos(2θ)

S=2∫[0,π](3/2)dθ+2∫[0,π] 2cosθdθ+2∫[0,π](1/2)cos(2θ)dθ

この積分なら出来ますね。

やってみて下さい。

S=3π となればOKです。
    • good
    • 0
この回答へのお礼

ここまで詳しく解説していだたけるとは・・本当に感謝です。
ありがとうございます。

お礼日時:2010/08/23 11:42

∫∫dxdy


= ∫ydx
= ∫(1 + cosθ)(1 + cosθ)dθ
= 2 ∫[0→π] (1 + cosθ)^2 dθ
なのでは?
    • good
    • 0
この回答へのお礼

一行目から2行目の発想ができませんでした・・。
解答ありがとうございました。

お礼日時:2010/08/23 11:43

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q線積分、面積分とは何?

現在、大学でベクトル解析を学んでいます。
そこで、線積分や面積分といったものがでてきたのですが、計算方法はわかったのですが、何を求めているのかが
今ひとつ分かりません。
 線積分とは、定点から、線分のある点に向かう
ベクトルとそのある点における値を掛けたものを線分上の
全ての点において足し合わせたもの、面積分とはある点における面素とその点における法線を掛けたものを面上の全ての点において足し合わせたもの
 と解釈しているのですが、やはり、どこの値がでてきているのかが今ひとつ分かりません。また、これを求めることによりどんな利点があるのでしょうか?力学や電磁気等を理解するには必須みたいですが・・・。
 よろしければ、回答お願いいたします。

Aベストアンサー

積分といえば単純に体積を求めたり、面積を求めたりするもの、と考えている人が少なからずいると思いますが、それだけではありません。高校の最後の方で学んでいるはずですが、道のりや速さなどありとあらゆるものを計算することもできます。

一言で言えば、積分とは「(無限小に)細かくわけて足し算すること。」に他なりません。

こういった視点からみてみますと、線積分とは「なにがしかの線を細かく分けて調べ、それをすべて足し合わせることによってその線全体の性質を調べること」を意味します。

例えば、「太さが一定でなく、とある関数であらわされているような紐の重さを計算する」というのが一つの例になるでしょう。

一方、面積分とは同じように書くならば、「何がしかの曲面を細かく分けて調べ、その量をすべて足し合わせることによって面全体の性質を調べること」になります。

例としては、日本全体の人口密度分布が分かっているときに、日本全体の人口を求めること、や、地価の分布が何らかの関数であらわされているとき、その地方の土地の値段の総量を求めるような計算が面積分です。

*******************************************
以上のようだそうです.

積分といえば単純に体積を求めたり、面積を求めたりするもの、と考えている人が少なからずいると思いますが、それだけではありません。高校の最後の方で学んでいるはずですが、道のりや速さなどありとあらゆるものを計算することもできます。

一言で言えば、積分とは「(無限小に)細かくわけて足し算すること。」に他なりません。

こういった視点からみてみますと、線積分とは「なにがしかの線を細かく分けて調べ、それをすべて足し合わせることによってその線全体の性質を調べること」を意味します。

例...続きを読む

Q楕円の変数変換

楕円E:(x/a)^2+(y/b)^2≦1 に関して
面積 ∬_E dxdy を求めるとき、
変数変換 x=ar*cosθ,y=br*sinθ を行うと、楕円 E の r,θ での表示 E' はどのようになるのでしょうか?

Aベストアンサー

E={(x,y)|(x/a)^2+(y/b)^2≦1}
E'={(r,θ|0≦r≦1,-π≦θ<π}
 または
E'={(r,θ|0≦r≦1,0≦θ<2π}
で良いでしょう。

なお、積分の変数変換でヤコビアン|J|を忘れないようにして下さい。
つまり
dxdy=|J|drdθ=abrdrdθ
∫[E] dxdy=∫[E'] abrdrdθ
 =4ab∫[0,π/2] dθ∫[0,1] rdr
 =2πab[r^2/2](r=1)
=πab
ということです。

Q2重積分の変数変換の範囲についてです。

2重積分の変数変換の範囲についてです。

∬f(x,y)dxdy=∬f(φ(u,v),ψ(u,v))|J|dudv
の式を用いて解く問題で、この式の使い方はわかるのですが、u,vの範囲の決め方がよくわかりません。

たとえば、
x=u(1+v),y=v(1+u)
0≦x≦2,0≦y≦x
となっていたら、
0≦u(1+v)≦2,0≦v(1+u)≦u(1+v)
を解けばいいんですよね?

答えでは、v≦u≦2/(1+v),0≦v≦1となっていました。
uの範囲は理解できますが、vの範囲(v≦1の部分が)がどうしてこうなるのかがわかりません。

同様にx=u+v,y=u-v
0≦x≦2,0≦y≦2-x

0≦u≦1,-u≦v≦u
のvの範囲(v≦uの部分が)がどうしてこうなるのかわかりません。

教えてください。

Aベストアンサー

>0≦u(1+v)≦2,0≦v(1+u)≦u(1+v)
>を解けばいいんですよね?
その通り。でも

>答えでは、v≦u≦2/(1+v),0≦v≦1となっていました。
は間違い。

uをx軸(横軸)、vをy軸(縦軸)にとって(u,v)の存在領域を図示すれば
積分領域が明確に分かるかと思います。
正解:「v≦u≦2/(1+v),0≦v≦1」及び「(2/u)-1≦v≦u,-2≦u≦-1」

>同様にx=u+v,y=u-v
>0≦x≦2,0≦y≦2-x
>で
>0≦u≦1,-u≦v≦u
>のvの範囲(v≦uの部分が)がどうしてこうなるのかわかりません。
0≦u+v≦2,0≦u-v≦2-u-v
をuv平面に描くと領域が図の斜線の領域になります。式で書けば
0≦u≦1,-u≦v≦u

Q変数変換を使う2重積分の問題を教えてください。

この問題で困っています。

問 次の2重積分を指定された変数変換を使って計算しなさい
∬D e^((x-y)/(x+y)) dxdy、
D={(x,y):1≦x+y≦2、x≧0、y≧0}
x=u(1-v)、y=uv
という問題です。
お願いします

Aベストアンサー

ヤコビアン|J|=|(∂x/∂u)(∂y/∂v)-(∂x/∂v)(∂y/∂u)|
=|(1-v)u-uv|=u|(1-2v)|
dxdy=|J|dudv=u|(1-2v)|dudv
x-y=u(1-2v), x+y=u
I=∬[D] e^((x-y)/(x+y)) dxdy
=∬[E] e^(1-2v) u|(1-2v)|dudv,E={(u,v):1≦u≦2,0≦v≦1}
=∫[1,2] udu*∫[0,1] |(1-2v)|e^(1-2v)dv
={(4-1)/2}
 *{∫[0,1/2] (1-2v)e^(1-2v)dv+∫[1/2,1](2v-1)e^(1-2v)dv}
1-2v=tとおくと -2dv=dt
=(3/2){∫[1,0] te^t dt/(-2)+∫[0,-1] -te^t dt/(-2)}
=(3/4){∫[0,1] te^t dt-∫[-1,0] te^t dt}
=(3/4){[(t-1)e^t][0,1]-[(t-1)e^t][-1,0]}
=(3/4){2-(2/e)}
=(3/2)(e-1)/e

Q楕円の重積分(2)

SS_A(x^2+y^2)dxdy A:(x^2/4)+y^2=1

これを、まず、A:(x/2)^2+y^2=1と考えます。
次に、(x/2)=uとおいて、A':u^2+y^2=1と考えます。
すると、u=r*cosθ,y=r*sinθです。
0<=r<=1,0<=θ<=2πですので、与えられた式は、
SS_A'(x^2+y^2)dudy
=SS_A'(r^2)dudy
=SS_A'(r^2)rdrdθ
これを解いていくと、
(1/2)π
が出ました。

どうでしょうか?
添削をお願いします。

Aベストアンサー

siegmund です.

∫∫_A (4u^2 + y^2) 2 du dy
から始めます.
対称性から
∫∫_A u^2 2 du dy
= ∫∫_A y^2 2 du dy
= (1/2) ∫∫_A (u^2 + y^2) 2 du dy
= (1/2) ∫∫_A r^2 2 du dy
です.
つまり,
∫∫_A (4u^2 + y^2) 2 du dy
= (5/2) ∫∫_A r^2 2 du dy
です.
これでθ積分を回避できます.

もちろん,対称性が悪ければ具体的にθ積分が必要で,
倍角公式でゴリゴリ(というほどの計算でもないが)できることは必要です.

> cos^2θの積分が1/2+(1/4sin)2θである

cos^2θの積分は θ/2+(1/4)sin2θですね.


人気Q&Aランキング