A 回答 (6件)
- 最新から表示
- 回答順に表示
No.6
- 回答日時:
#1です。
少しだけ補足です。
「仕上げはピタゴラスの定理」と書きましたが、
cosの値を求める場合にはそこまで必要ありません。
他の方も回答を書かれているとおり、答えは一通りではありません。
倍角や3倍角の公式などを用いると、いろいろな角度に対する sinや cosの値が計算できます。
(答え自身、ややこしい形になってしまいますが)
No.5
- 回答日時:
#2,#4です。
A#4の補足しておきます。
t=72°は
t=72°=360°/5=2π/5[rad]
のことです。
つまり
x=cos72°=cos(2π/5)
のことです。
No.4
- 回答日時:
#2です。
別解です。
5倍角の公式
cos(5t)=16cos^5(t)-20cos^3(t)+5cos(t)
を利用します。
5t=360°とおくとt=72°
x=cos72°=cos(t)とおくと
cos(5t)=cos360°=1なので
1=16x^5-20x^3+5x
16x^5-20x^3+5x-1=0
(x-1)(4x^2+2x-1)=0
x=cos72°≠1なので
4x^2+2x-1=0
x>0なので2次方程式の正根を根の公式で求めれば
それがcos72°の値ですね。
No.3
- 回答日時:
>公式ばかり当てはめようとして、シンプルな気づきに至りませんでした。
図形的にではなくて、加法定理の公式から求めたい場合には。
θ=2π/5
のとき、
cos(2θ)=cos(4π/5)=cos(6π/5)=cos(3θ)
で、
cos(2θ) = cos(3θ)
が成り立つんで、cosの2倍角、3倍角の公式を使うと、
2(cosθ)^2 - 1 = 4(cosθ)^3 - 3cosθ
という、cosθに関する3次方程式ができるので、これを解けばいいです。
No.2
- 回答日時:
参考URLの一辺の長さ=2の正五角形ABCDにおいて
△ACDで
CD=2, AC=AD=1+√5
であることから
∠ACD=(72°=2π/5)
に対して
余弦(第二)定理
cos72°=(AC^2+CD^2-AD^2)/(2AC*CD)
を適用するだけです。
参考URL:http://www004.upp.so-net.ne.jp/s_honma/angle5/an …
No.1
- 回答日時:
2π/5= 72°ですね。
π/5+ 2π/5+ 2π/5= 180°ということを利用します。
そのために、頂角が36°(底角が72°)の二等辺三角形を描きます。
次に、底角の一方に角の二等分線を引きます。
72°÷2= 36°なので、また別の二等辺三角形が現れます。
ここから、等しい2辺と底辺の長さの比が求められます。
仕上げはピタゴラスの定理を用いれば、cosの値が得られます。
この二等辺三角形はよくでる問題なので、じっくり解いてみてください。
正五角形や黄金比といったキーワードも絡んできます。
なるほど~
とてもよくわかりました。
公式ばかり当てはめようとして、シンプルな気づきに至りませんでした。
ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
あるあるbotに投稿したけど採用されなかったあるある募集
あるあるbotに投稿したけど採用されなかったあるあるをこちらに投稿してください
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
映画のエンドロール観る派?観ない派?
映画が終わった後、すぐに席を立って帰る方もちらほら見かけます。皆さんはエンドロールの最後まで観ていきますか?
-
海外旅行から帰ってきたら、まず何を食べる?
帰国して1番食べたくなるもの、食べたくなるだろうなと思うもの、皆さんはありますか?
-
天使と悪魔選手権
悪魔がこんなささやきをしていたら、天使のあなたはなんと言って止めますか?
-
cos二分の5πの値とsin二分の5πの値を教えてください。
高校
-
z=cos2π/5+i sin2π/5のとき、 z^4+z^3+z^2+z+1の値をもとめよ。 とい
大学受験
-
∞/0って不定形ですか?∞ですか? そもそも不定形の定義ってなんでしたっけ
数学
-
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【お題】絵本のタイトル
- ・【大喜利】世界最古のコンビニについて知ってる事を教えてください【投稿~10/10(木)】
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・ハマっている「お菓子」を教えて!
- ・最近、いつ泣きましたか?
- ・夏が終わったと感じる瞬間って、どんな時?
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
数学の質問です。 0≦θ<2πのとき...
-
eの2πi乗は1になってしまうんで...
-
三角関数で、
-
cos2x=cosx ってなにを聞かれ...
-
cos²140°=cos²40°になる理由が...
-
重積分(変数変換)の計算
-
三角関数
-
4辺の長さが違う四角形の内角...
-
cos60°が、なぜ2分の1になるの...
-
四角形の対角線の角度の求め方...
-
(2)の問題は、どうしてcos13/6π...
-
cos(θ-π/2)=cos(π/2-θ)になるの...
-
cosΘの問題
-
三角関数
-
cos180°=-1に納得できません
-
【数字】 d(cosθ)というのと、d...
-
何故割る必要があるのですか 0...
-
三角関数
-
1/ a + bcosx (a,b>0)の 不定積...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学の質問です。 0≦θ<2πのとき...
-
1+cosθをみると何か変形ができ...
-
e^2xのマクローリン展開を求め...
-
積分
-
cos2x=cosx ってなにを聞かれ...
-
cos(2/5)πの値は?
-
eの2πi乗は1になってしまうんで...
-
三角関数で、
-
cos60°が、なぜ2分の1になるの...
-
複素数zはz^7=1かつz≠1を満たす...
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
cos2θ−3cosθ+ 2≧0の不等式を解...
-
cosΘの問題
-
△ABCにおいてAB=4、BC=6、CA=5...
-
自然対数eは何に使えるのですか...
-
cos(θ-π/2)=cos(π/2-θ)になるの...
-
cos2θ+cosθ+1=0
-
積分の問題です
-
高校数学 三角関数
-
数学の質問です。 円に内接する...
おすすめ情報