高校数学Ⅲの複素数平面で、いろいろな数の累乗根を求める計算が面白いです。そこで、方程式 √x=-1 の解ってどうなるんだろうと、ふと考えてみたところ、解決できませんでした。
複素数平面の考えを利用すると、次のようになってしまいます。
x=r(cosθ+isinθ) (0≦θ<2π) とすると
x^(1/2)=r^(1/2)(cosθ/2+isinθ/2)
-1=cosπ+isinπ
これより
r^(1/2)(cosθ/2+isinθ/2)=cosπ+isinπ
両辺を比較すると r^(1/2)=1,θ/2=π+2kπ (kは整数)
よって r=1,θ=2π+4kπ
-------------------------------------------------------
この時点でθが範囲にそぐわない。
かといって範囲を0≦θ<4πにしてk=0を考えたところで、偏角θ=2πはθ=0と同義であり、解としてx=1が得られるので矛盾する。
これについて、自身の考えは次のようになりますが、どうなのでしょうか?
・「解なし」が正解
・複素数とは全く異なる数の概念がある(大学レベル)
No.2ベストアンサー
- 回答日時:
0≦θ<2π と仮定したのが誤り。
そうすると、0≦θ/2<π となってしまい、
√x の値域は上半平面となる。
√x = a の a に任意の値を指定するためには、
0≦θ/2<2π か、それ以上広い範囲にしておかなければならなかった。
今回は -1 が 0≦θ/2<π の縁にあるから
微妙な感じだの、ちょっと不思議な感じもするが、
これが √x = -i を解く話だったら
0≦θ<2π ではいけないことがよりハッキリしただろう。
No.1 も指摘しているように、
複素√ 関数は多価関数なので √1 = 1 ではなく
√1 = ±1 だが、それにしても上記の θ の範囲を
クリアしなくては、「解がなし」という誤解を解決できない。
最初に θ を任意の実数と仮定してあれば、
質問文中の解法にしたがって r = 1, θ = 2π + 4kπ より
x = r(cosθ + i sinθ) = 1 と正解できたのだ。
もとより、√x = -1 を正しく解くだけなら、
両辺を2乗して x = (-1)^2 = 1 だけで済む。
お礼が遅くなって申し訳ありません。ご回答ありがとうございます。
√(複素数)は2値関数になることに加えて、θの範囲の取り方にも問題があったことにも気づけずに、複素数平面への理解が甘いと感じました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
△ABCにおいてAB=4、BC=6、CA=5...
-
e^2xのマクローリン展開を求め...
-
cos60°が、なぜ2分の1になるの...
-
eの2πi乗は1になってしまうんで...
-
数学の質問です。 0≦θ<2πのとき...
-
円盤回転の問題(体積)
-
数II 三角関数 質問です
-
媒介変数表示の2重積分の問題です
-
三角関数で、
-
cos(2/5)πの値は?
-
3辺の長さが-2x-1,x^2+2x,x^2+x...
-
ω=θ/tのとき cosθをtで積分す...
-
数学で円に外接している四角形...
-
cos25° 求め方教えてください。...
-
ベクトル解析でストークスの定...
-
1/ a + bcosx (a,b>0)の 不定積...
-
心臓形の重心
-
cos2x=cosx ってなにを聞かれ...
-
【数学】cos, sin, tanってどう...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
数学の質問です。 0≦θ<2πのとき...
-
eの2πi乗は1になってしまうんで...
-
e^2xのマクローリン展開を求め...
-
cos2x=cosx ってなにを聞かれ...
-
三角関数で、
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
cos60°が、なぜ2分の1になるの...
-
cos(2/5)πの値は?
-
cos2θ−3cosθ+ 2≧0の不等式を解...
-
複素数zはz^7=1かつz≠1を満たす...
-
x=rcosθ の微分
-
cos^3tを微分するときはどうや...
-
(cosθ+isinθ)^2=cos2θ+isin2θ ...
-
三角関数
-
二等辺三角形においての余弦定...
-
cos40°の値を求めています。
-
cosΘの問題
-
フーリエ級数|cosx|
-
Σは二乗されないのですか?
おすすめ情報