
A 回答 (3件)
- 最新から表示
- 回答順に表示
No.3
- 回答日時:
0≦θ≦π
cos(2θ+π/3)=cosθ
cos(2θ+π/3)-cosθ=0
-2sin((3θ+π/3)/2)sin((θ+π/3)/2)=0
sin(3θ/2+π/6)sin(θ/2+π/6)=0
π/6≦θ/2+π/6≦π/2+π/6=2π/3
sin(θ/2+π/6)>0だから
sin(3θ/2+π/6)=0
π/6≦3θ/2+π/6≦3π/2+π/6=5π/3
3θ/2+π/6=π
9θ+π=6π
9θ=5π
∴
θ=5π/9
No.2
- 回答日時:
やり方は山ほどあるが...
cosA = cosB ⇔ A = ±B+2πn, nは整数 を使って
cos を含まない式にする方法が簡単かと思う。
cos(2θ+π/3) = cosθ
⇔ 2θ+π/3 = ±θ+2πn, nは整数
となるから、ふたつの一次方程式を解くと
θ = -π/3 + 2πn ←[1]
または θ = -π/9 + (2/3)πn. ←[2]
[1] の解が 0 ≦θ ≦π となることはない。
[2] の解が 0 ≦θ ≦π となるのは、
n = 1 のときで θ = (5/9)π.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 高校生です。 この問題の解説がなくてこの解き方で合っているでしょうか? g(x,y)=0のとき x^ 2 2023/01/25 17:28
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 数学 写真の(3)の問題の解説の1行目についてですが、 ①なぜ、曲線Kの囲む図形は、cos(-θ)と表せる 5 2023/01/26 00:36
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
- 数学 cos x = 0の解の書き方について 6 2023/05/31 08:06
- 数学 次の複素数を極形式で表せ。偏角θの範囲は0≦θ<2πとする -4( cosπ/5+i sinπ/5) 6 2023/07/03 14:19
- 数学 極座標A(2,π/6)となる点を通り、OAに垂直な直線lの曲方程式を求めよ という問題を直交座標を利 1 2022/08/04 17:31
- 物理学 (1)秒針の角速度の大きさω(ω>0)を計算しなさい 単位はrad/s、πはそのまま残すこと (2) 3 2023/05/01 12:58
- 教えて!goo 昨日数学の三角関数に関する質問をここでしたら、ガイドライン違反と言われて運営に勝手に削除されました。 6 2022/10/20 13:01
このQ&Aを見た人はこんなQ&Aも見ています
-
ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
高校生はアルバイトするべきだろうか?
-
許せない心理テスト
皆さんがこれまで受けた中で許せない心理テストがあれば教えていただきたいです。
-
最速怪談選手権
できるだけ短い文章で怖がらせてください。
-
チョコミントアイス
得意ですか?不得意ですか?できれば理由も教えてください。
-
自分用のお土産
国内や海外に旅行へ行った時、自分用のお土産ってどれくらい買いますか?
-
cos(2θ+π/3)=√3/2 の問題なのですが、まったくわかりません。 どういう流れでどの数字が
高校
-
0≦θ<2πのとき次の不等式を解け。
数学
-
-cosθ=cos2θってθについてどうときますか
数学
-
-
4
三角関数の不等式
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・昔のあなたへのアドバイス
- ・字面がカッコいい英単語
- ・許せない心理テスト
- ・歩いた自慢大会
- ・「I love you」 をかっこよく翻訳してみてください
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・はじめての旅行はどこに行きましたか?
- ・準・究極の選択
- ・この人頭いいなと思ったエピソード
- ・「それ、メッセージ花火でわざわざ伝えること?」
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・【お題】甲子園での思い出の残し方
- ・【お題】動物のキャッチフレーズ
- ・人生で一番思い出に残ってる靴
- ・これ何て呼びますか Part2
- ・スタッフと宿泊客が全員斜め上を行くホテルのレビュー
- ・あなたが好きな本屋さんを教えてください
- ・かっこよく答えてください!!
- ・一回も披露したことのない豆知識
- ・ショボ短歌会
- ・いちばん失敗した人決定戦
- ・性格悪い人が優勝
- ・最速怪談選手権
- ・限定しりとり
- ・性格いい人が優勝
- ・これ何て呼びますか
- ・チョコミントアイス
- ・単二電池
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・ゴリラ向け動画サイト「ウホウホ動画」にありがちなこと
- ・泣きながら食べたご飯の思い出
- ・一番好きなみそ汁の具材は?
- ・人生で一番お金がなかったとき
- ・カラオケの鉄板ソング
- ・自分用のお土産
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
cos(2/5)πの値は?
-
1+cosθをみると何か変形ができ...
-
eの2πi乗は1になってしまうんで...
-
e^2xのマクローリン展開を求め...
-
cos2x=cosx ってなにを聞かれ...
-
数学の質問です。 0≦θ<2πのとき...
-
積分
-
∮sinθcos^2θを置換積分なしで =...
-
複素数zはz^7=1かつz≠1を満たす...
-
数Ⅱ 三角関数 問 0≦θ<2πのとき,...
-
△ABCにおいてAB=4、BC=6、CA=5...
-
(cosθ+isinθ)^2=cos2θ+isin2θ ...
-
複素数の問題について
-
三角関数で、
-
X5乗-1=0 の因数分解の仕方...
-
cosθやsinθを何乗もしたものを...
-
1/ a + bcosx (a,b>0)の 不定積...
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
三角関数
-
cos2θ−3cosθ+ 2≧0の不等式を解...
おすすめ情報