No.1ベストアンサー
- 回答日時:
なぜって、直角三角形で、斜辺の長さが 2、直角をはさむ辺の長さが 1, √3 のときに、斜辺と長さ1の辺のなす角が 60° になるからです。
理由があるわけではなく、そういう事実関係だということです。
No.5
- 回答日時:
別解で、CからのABへの垂線をCDとすると、CD=4・sin60°=4・(√3/2)=2√3
AD=4・cos60°=4(1/2)=2 ,BD=6 ー2=4
よって、a^2=4^2+2√3^2=16+12=28 →√28 >0
ゆえにcos60°=1/2

No.3
- 回答日時:
多分この図の辺でcos 60°をイメージしているのかも。
冒頭に書いてある余弦の定理は
b²+c²-a²-2×b×c×cos A=0 でこの図の値を代入すると
a²=4²+6²-2×6×4×cos 60°
cos 60°は普通に考えるcos 60°です。
No.2
- 回答日時:

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 cos{θ-(3π/2)}が-sinθになるのが分かりません。 途中式教えてください 6 2022/04/11 14:44
- 数学 「n≦-2の時 z≠π/2の時 g(z)=tan(z)(z-π/2)^(-n-1) z=π/2の時 22 2022/07/04 22:24
- 数学 複素数についての質問です。 1+iの主値を求める問題で回答が以下のようになっていました。 1+i = 5 2022/07/22 04:04
- 高校 数3 面積 4 2022/05/11 12:37
- 物理学 (1)秒針の角速度の大きさω(ω>0)を計算しなさい 単位はrad/s、πはそのまま残すこと (2) 3 2023/05/01 12:58
- 物理学 フーリエ級数展開をExcelのFFTでシミュレートする 5 2023/07/03 22:02
- 数学 tan(z)=h(z)/(z-π/2)から h(z)=-(z-π/2)cos(z-π/2)/sin( 2 2022/08/01 23:44
- 数学 lim_{θ→π/2}(θ-π/2)f(θ) =lim_{θ→π/2}(θ-π/2)sinθ/cos 3 2022/04/13 00:33
- 数学 ∫(∞~-∞ )cos(2x)/(x^2+1)^2 の積分のやり方を教えて欲しいです。 途中の計算の 1 2022/07/24 01:37
- 数学 次の関数を微分せよ y=sin^4 x cos^4 x という問題で自分は積の微分法で微分して y' 3 2023/05/17 20:38
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・昔のあなたへのアドバイス
- ・字面がカッコいい英単語
- ・許せない心理テスト
- ・歩いた自慢大会
- ・「I love you」 をかっこよく翻訳してみてください
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・はじめての旅行はどこに行きましたか?
- ・準・究極の選択
- ・この人頭いいなと思ったエピソード
- ・「それ、メッセージ花火でわざわざ伝えること?」
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・【お題】甲子園での思い出の残し方
- ・【お題】動物のキャッチフレーズ
- ・人生で一番思い出に残ってる靴
- ・これ何て呼びますか Part2
- ・スタッフと宿泊客が全員斜め上を行くホテルのレビュー
- ・あなたが好きな本屋さんを教えてください
- ・かっこよく答えてください!!
- ・一回も披露したことのない豆知識
- ・ショボ短歌会
- ・いちばん失敗した人決定戦
- ・性格悪い人が優勝
- ・最速怪談選手権
- ・限定しりとり
- ・性格いい人が優勝
- ・これ何て呼びますか
- ・チョコミントアイス
- ・単二電池
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・ゴリラ向け動画サイト「ウホウホ動画」にありがちなこと
- ・泣きながら食べたご飯の思い出
- ・一番好きなみそ汁の具材は?
- ・人生で一番お金がなかったとき
- ・カラオケの鉄板ソング
- ・自分用のお土産
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
cos(2/5)πの値は?
-
1+cosθをみると何か変形ができ...
-
eの2πi乗は1になってしまうんで...
-
e^2xのマクローリン展開を求め...
-
cos2x=cosx ってなにを聞かれ...
-
数学の質問です。 0≦θ<2πのとき...
-
積分
-
∮sinθcos^2θを置換積分なしで =...
-
複素数zはz^7=1かつz≠1を満たす...
-
数Ⅱ 三角関数 問 0≦θ<2πのとき,...
-
△ABCにおいてAB=4、BC=6、CA=5...
-
(cosθ+isinθ)^2=cos2θ+isin2θ ...
-
複素数の問題について
-
三角関数で、
-
X5乗-1=0 の因数分解の仕方...
-
cosθやsinθを何乗もしたものを...
-
1/ a + bcosx (a,b>0)の 不定積...
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
三角関数
-
cos2θ−3cosθ+ 2≧0の不等式を解...
おすすめ情報
2分の3(4分の6の約分)じゃだめなのでしょうか?
半円の図で考えるのではなく、普通に基礎?的に。