No.4ベストアンサー
- 回答日時:
> 答えは
> 2/π +(4cos2x)/3π -4cos4x/15π+・・・+(4cos2nx×(-1)^(n+1))/(4n^2-1)π+・・・・
> でよいでしょうか?
そうだと思います.
No.3
- 回答日時:
注意点:
[1]
|cos x| の基本周期は(2πではなく) πです.
(|cos x| のグラフを描けばわかります.)
そこで,積分区間を[-π/2, π/2]とすれば,
この区間で |cos x| = cos x なので,容易に絶対値をはずせます.
そうすると,基本周期がπなので,
関数列 cos(2nx), sin(2nx) で展開しなければいけません.
(cos や sin の引数が,nx ではなく,2nx であることに注意.)
[2]
|cos x| は偶関数なので,
sin(2nx)の展開係数 b[n] はすべて 0 になるはず.
さらに偶関数であることを利用すれば,
a[n] = (2/π)∫[-π/2, π/2] |cos x| cos(2nx) dx
= (4/π)∫[0, π/2] cos x cos(2nx) dx.
あとは「積→和の公式」を使って...
頑張ってください.
絶対値の場合分けを間違っていました。
答えは
2/π +(4cos2x)/3π -4cos4x/15π+・・・+(4cos2nx×(-1)^(n+1))/(4n^2-1)π+・・・・でよいでしょうか?
No.2
- 回答日時:
その計算は絶対値を外すときの注意不足か.
a0=1/π∫(-π→π)|cos x| dx
=2/π∫(0→π) |cos x| dx
≠2/π∫(0→π) cos x dx = 0.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 フーリエ変換の振幅について 1 2022/09/04 08:56
- 数学 f(x)=1 (0<x<L) f(x)=x (0<x<L) のフーリエ正弦級数とフーリエ余弦級数の求 1 2022/12/01 17:05
- 数学 f(x)=x (0<x<L) のフーリエ正弦級数とフーリエ余弦級数の求めよという問題が分からないので 3 2022/12/03 14:39
- 数学 f(x)=x+1 (-π<x≦π)のフーリエ級数の複素フーリエ級数を求めよという問題が分からないので 1 2022/12/13 17:30
- 数学 -π<x≦π、f(x)=|sinx|+1 である周期関数f(x)のフーリエ級数を求めよという問題の解 1 2023/02/06 18:20
- 数学 -π<x≦π、f(x)=|sinx|+1 である周期関数f(x)のフーリエ級数について、 an=4/ 1 2023/02/10 14:18
- 数学 フーリエ級数係数 2 2023/06/04 14:29
- 数学 フーリエ級数展開の問題 1 2022/11/04 10:57
- 数学 離散フーリエ逆変換が周波数分割数をNにできる理由について 4 2022/09/18 12:56
- 大学・短大 絶対値付きのフーリエ級数について 1 2022/04/23 11:23
このQ&Aを見た人はこんなQ&Aも見ています
-
見学に行くとしたら【天国】と【地獄】どっち?
みなさんは、一度だけ見学に行けるとしたら【天国】と【地獄】どちらに行きたいですか? 理由も聞きたいです。
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
最強の防寒、あったか術を教えてください!
とっても寒がりなのですが、冬に皆さんがされている最強の防寒、あったか術が知りたいです!
-
【選手権お題その3】この画像で一言【大喜利】
とあるワンシーンを切り取った画像。この画像で一言、お願いします!
-
今から楽しみな予定はありますか?
いよいよ2025年が始まりました。皆さんには、今から楽しみにしている予定はありますか?
-
f(x)=|sinx| のフーリエ展開がわかりませ
数学
-
フーリエ級数の問題で、f(x)は関数|x|(-π<x<π)で同期2πで
数学
-
フーリエ級数、絶対値付き三角関数の問題
数学
-
-
4
絶対値 微分 問題
数学
-
5
cosxのフーリエ級数が分かりません akの結果が0となってしまいます 何故でしょうか??
数学
-
6
三角関数の複素フーリエ級数展開について
数学
-
7
どんな式でも偶関数か奇関数のどちらかになるのですか?
数学
-
8
絶対値付きのフーリエ級数について
大学・短大
-
9
x(π−x)をフーリエ級数展開してください。 その結果を用いて以下の等式を証明してください。 1/(
数学
-
10
ナフトールの配向性
化学
-
11
フーリエ変換の問題について
数学
-
12
マティーセンの法則
物理学
-
13
e^(x^2)の積分に関して
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
e^2xのマクローリン展開を求め...
-
cos(2/5)πの値は?
-
∮sinθcos^2θを置換積分なしで =...
-
eの2πi乗は1になってしまうんで...
-
0 ≦θ ≦πのとき cos(2θ+π/3)=cos...
-
微分方程式y”+λy=0につい...
-
3次式 8*x^3-6*x+1 の因数分解
-
関数電卓で三角関数の計算
-
(cosx)^8の積分
-
1+tan^2θ=1/cos^2θが、1/1+tan...
-
cos2x=cosx ってなにを聞かれ...
-
三角関数
-
複素数を引数とする(?)ベッ...
-
cos2θ=2(cosθ)^2-1ですよね・・・
-
長方形窓の立体角投射率
-
cosθやsinθを何乗もしたものを...
-
△ABCにおいてAB=4、BC=6、CA=5...
-
cos3乗x3乗の微分のやり方教...
-
cos40°の値を求めています。
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
eの2πi乗は1になってしまうんで...
-
1+cosθをみると何か変形ができ...
-
cos(2/5)πの値は?
-
数学の質問です。 0≦θ<2πのとき...
-
フーリエ級数|cosx|
-
△ABCにおいてAB=4、BC=6、CA=5...
-
cos2x=cosx ってなにを聞かれ...
-
e^2xのマクローリン展開を求め...
-
複素数の問題について
-
三角関数で、
-
角の三等分線の長さ
-
積分
-
0 ≦θ ≦πのとき cos(2θ+π/3)=cos...
-
cosθやsinθを何乗もしたものを...
-
二等辺三角形においての余弦定...
-
cos60°が、なぜ2分の1になるの...
-
高校数学 三角関数
-
1/ a + bcosx (a,b>0)の 不定積...
-
長方形窓の立体角投射率
-
複素数zはz^7=1かつz≠1を満たす...
おすすめ情報