
数Ⅱ 三角関数
問 0≦θ<2πのとき,方程式2cos2θ+4cosθ+3-α=0の解の個数を,定数αの値の範囲によって調べよ。
解答
方程式を変形すると
2(2cos²θ-1)+4cosθ+3-α=0
よって 4cos²θ+4cosθ+1=α
y=4cos²θ+4cosθ+1, cosθ=tとおくと
y=4t²+4t+1=4(t+1/2)² ………①
また -1≦t≦1
-1≦t≦1における,
関数①のグラフと直線y=αの共有点の個数を
調べると,
α<0,9<αのとき 0個
α=0,1<α<9のとき
-1<t<1の範囲に1個
0<α<1のとき
-1<t<1の範囲に2個
α=1のとき
-1<t<1の範囲に1個と,
t=-1のときの1個
α=9のとき
t=1のときの1個
cosθ=t(0≦θ<2π)の解の個数は
t=±1のとき1個,-1<t<1のとき2個であるから,
求める解の個数は
α<0のとき0個,α=0のとき2個,
0<α<1のとき4個,α=1のとき3個,
1<α<9のとき2個,α=9のとき1個,
9<αのとき0個
・なぜ関数①のグラフと直線y=αの共有点の個数を
調べると答えが求められるのか?
・調べるとなぜこのようになるのか?
が分かりません。。
分からなくて困っているの教えて下さい!お願いします☺︎
No.4ベストアンサー
- 回答日時:
y=4t^2+4t+1=4(t+1/2)^2 但し -1≦t≦1 のグラフは添付の赤実線の通り。
これとにらめっこしながら解説。その赤実線とy=aの交点を調べてみる。
例えば、α=-1/2の場合、下の実線だが、この場合は交点がない。
例えば、α=0(つまりx軸)の場合、交点は1つとなる。
例えば、α=1/2の場合、交点は2つある。
例えば、α=9/2=4.5の場合、交点は1つある。
例えば、α=10の場合、交点はない。
これをまとめると、
----------
α<0,9<αのとき 0個
α=0,1<α<9のとき
-1<t<1の範囲に1個
0<α<1のとき
-1<t<1の範囲に2個
α=1のとき
-1<t<1の範囲に1個と,
t=-1のときの1個
α=9のとき
t=1のときの1個
----------
となるのだが、私はこう書きたい。
----------
α<0のとき、tはない。
α=0のとき、tは1つある。
0<α≦1のとき、tは2つある。
1<α≦9のとき、tは1つある。
9<αのとき、tはない。
----------
ただ、実際求めたいのはtではなくてθなのだから、0≦θ<2πの範囲で各々吟味する。
----------
α<0のとき、tはない。ということは、そんなθもない。
α=0のとき、tは1つあってt=-1/2。→cosθ=-1/2→θ=(2/3)π、(4/3)πと2つある。
0<α<1のとき、tは2つある。その一つは -1<cosθ<-1/2 であり、もう一つは-1/2<cosθ<0 である。その各々に対して解となるθは2つずつある(※これは単位円を描いてみるとよくわかる。)ので、θは4つあることになる。
α=1のとき、t=-1、0となる。t=-1→cosθ=-1→θ=π、t=0→cosθ=0→θ=(1/2)π、(3/2)πの3つ。
1<α<9のとき、tは1つある。それは0<cosθ<1を意味しているので、θは2つ存在することになる。
α=9のとき、tは1つある。それは、cosθ=1を意味しているので、θ=0となる(1つ存在する)。
9<αのとき、tはない。
以上をまとめると、
----------
α<0のときは0こ
α=0のときは2つ
0<α<1のときは4つ
α=1のときは3つ
1<α<9のときは2つ
α=9のときは1つ
9<αのときは0こ
----------
となる。

なるほど!とても分かりやすい解説ありがとうございます☺︎最初は全く理解できませんでしたがやっと分かりました✧グラフもありがとうございました!とても分かりやすかったのでベストアンサーに選ばさせてもらいます☺︎
No.3
- 回答日時:
2cos(2θ) + 4cosθ + 3 - α = 0 は、 cosθ = t と置くと
4(t + 1/2)² = α と変形できる。 これがほぼ全て。
この式を満たす t の個数は、y = 4(t + 1/2)² かつ y = α
を満たす点 (t,y) の個数と同じなので、
y = 4(t + 1/2)² と y = α のグラフの交点で考えることができる。
ただし、 t の値が ±1 かどうかはチェックする必要があり、
t = ±1 については、その t に対応する θ が 1 個、
t ≠ ±1 については、その t に対応する θ が 2 個ある。
この部分は、y = cosθ のグラフを思い浮かべて
t の各値について y = cosθ と y = t の交点 (θ,y) を
考えれば判ると思う。
以上を集計すれば、質問文中の解答のようになる。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 線形代数の行列についての問題がわからないです。 1 2022/07/18 17:46
- 数学 写真の(3)の問題の解説の1行目についてですが、 ①なぜ、曲線Kの囲む図形は、cos(-θ)と表せる 5 2023/01/26 00:36
- 数学 数学3の微分法・対数関数の導関数に関しての質問です。 [ ] は絶対値を表しています。 y=log[ 3 2022/05/24 14:07
- 数学 次の関数を微分せよ y=sin^4 x cos^4 x という問題で自分は積の微分法で微分して y' 3 2023/05/17 20:38
- 数学 極座標A(2,π/6)となる点を通り、OAに垂直な直線lの曲方程式を求めよ という問題を直交座標を利 1 2022/08/04 17:31
- 数学 数学の質問です。 cos∠BCD=−1/6とします。 「∠BCD=θと置いて、cosθ=-1/6」 2 2023/04/19 18:17
- 数学 次の複素数を極形式で表せ。偏角θの範囲は0≦θ<2πとする -4( cosπ/5+i sinπ/5) 6 2023/07/03 14:19
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 数学 三角関数教えてください! 3 2022/05/06 19:46
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
このQ&Aを見た人はこんなQ&Aも見ています
-
性格悪い人が優勝
できるだけ性格悪い人になって回答をお願いします。
-
「これはヤバかったな」という遅刻エピソード
寝坊だったり、不測の事態だったり、いずれにしても遅刻の思い出はいつ思い出しても冷や汗をかいてしまいますよね。
-
"I love you" をかっこよく翻訳してみてください
あなたが考えるいちばんかっこいい "I love you"の訳を教えてください。
-
一番好きなみそ汁の具材は?
みんなで大好きなみそ汁の具材について語り合おうよっ!
-
人生で一番お金がなかったとき
人生で一番お金がなかったときって、どんなときでしたか?
-
y=sinxcosx-sin^2x+1/2 (0≦x≦π) の最大値と最小値を求めよ の問題について
高校
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・昔のあなたへのアドバイス
- ・字面がカッコいい英単語
- ・許せない心理テスト
- ・歩いた自慢大会
- ・「I love you」 をかっこよく翻訳してみてください
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・はじめての旅行はどこに行きましたか?
- ・準・究極の選択
- ・この人頭いいなと思ったエピソード
- ・「それ、メッセージ花火でわざわざ伝えること?」
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・【お題】甲子園での思い出の残し方
- ・【お題】動物のキャッチフレーズ
- ・人生で一番思い出に残ってる靴
- ・これ何て呼びますか Part2
- ・スタッフと宿泊客が全員斜め上を行くホテルのレビュー
- ・あなたが好きな本屋さんを教えてください
- ・かっこよく答えてください!!
- ・一回も披露したことのない豆知識
- ・ショボ短歌会
- ・いちばん失敗した人決定戦
- ・性格悪い人が優勝
- ・最速怪談選手権
- ・限定しりとり
- ・性格いい人が優勝
- ・これ何て呼びますか
- ・チョコミントアイス
- ・単二電池
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・ゴリラ向け動画サイト「ウホウホ動画」にありがちなこと
- ・泣きながら食べたご飯の思い出
- ・一番好きなみそ汁の具材は?
- ・人生で一番お金がなかったとき
- ・カラオケの鉄板ソング
- ・自分用のお土産
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
【数学】コサインシータって何...
-
cos(2/5)πの値は?
-
数Ⅱ 三角関数 問 0≦θ<2πのとき,...
-
1+cosθをみると何か変形ができ...
-
この問題教えてください 範囲は...
-
数1青チャート例題140(3)で...
-
商の微分について
-
二等辺三角形においての余弦定...
-
三角関数
-
cos2x=cosx ってなにを聞かれ...
-
弓形の高さ
-
フーリエ係数
-
lim[x→0] (sinx)^2 / (1-cosx) ...
-
これは部分積分した式を微分し...
-
1/(2+cos2x)の積分
-
cos(arcsinx) = sqrt(1-xx)
-
【数字】 d(cosθ)というのと、d...
-
∫xsinxdxについて どうして画像...
-
∫cos^2xsin^3xdxの求め方
-
高校数学 三角関数
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
cos(2/5)πの値は?
-
1+cosθをみると何か変形ができ...
-
eの2πi乗は1になってしまうんで...
-
e^2xのマクローリン展開を求め...
-
cos2x=cosx ってなにを聞かれ...
-
数学の質問です。 0≦θ<2πのとき...
-
積分
-
∮sinθcos^2θを置換積分なしで =...
-
複素数zはz^7=1かつz≠1を満たす...
-
数Ⅱ 三角関数 問 0≦θ<2πのとき,...
-
△ABCにおいてAB=4、BC=6、CA=5...
-
(cosθ+isinθ)^2=cos2θ+isin2θ ...
-
複素数の問題について
-
三角関数で、
-
X5乗-1=0 の因数分解の仕方...
-
cosθやsinθを何乗もしたものを...
-
1/ a + bcosx (a,b>0)の 不定積...
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
三角関数
-
cos2θ−3cosθ+ 2≧0の不等式を解...
おすすめ情報
たくさんの回答ありがとうございます☺︎
しかし私の勉強不足で「cosθ=t(0≦θ<2π)の解の個数はt=±1のとき1個,-1<t<1のとき2個であるから〜」からがまだよく分かりません。
t=±1のとき1個は多分理解出来たのですが、-1<t<1のとき2個になるのはなぜかが分かりません。できれば図などで教えて頂くとありがたいです!
また、「0<α<1のとき-1<t<1の範囲に2個」と出たのになぜ最後の答えでは4個になっているのはなぜですか?
本当に初歩的な問題かも知れませんが細く教えて欲しいです。お願いいたします☺︎