A 回答 (1件)
- 最新から表示
- 回答順に表示
No.1
- 回答日時:
積和公式から
(1/2)・cosx・cosx=(1/2)・(1/2)・{ cos(x+x)+cos(xーx)}
=(1/4)・(cos2x+cos 0 )=(1/4)・(cos2x+1) …半角の公式
よって、
∫ (1/4)・(cos2x +1)dx=(1/4)・ (1/2)sin2x +(1/4)∫ 1・dx
=(1/8)sin2x +x/4 +C …積分定数
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 ∫(∞~-∞ )cos(2x)/(x^2+1)^2 の積分のやり方を教えて欲しいです。 途中の計算の 1 2022/07/24 01:37
- 数学 sinA+sinBは、A=(α+β),B=(α-β)と置き換えて sin(α+β)=sinαcosβ 2 2022/08/23 08:06
- 高校 数学III 積分 数学IIIの積分でf(ax+b)の積分公式がありますが b=0の時どのように考えれ 4 2022/09/30 02:06
- 数学 次の関数を微分せよ y=sin^4 x cos^4 x という問題で自分は積の微分法で微分して y' 3 2023/05/17 20:38
- 数学 数学のサインコサインの和積の公式についてです。 積和、和積には、どちらもA-Bのように差を求める項が 2 2023/07/02 15:18
- 数学 1/(4cos^2x+sin^2)で、 tan(x/2)=tとおいたとき、 sinx=2t/(1+t 2 2022/07/04 13:58
- 数学 複利毎月積み立てで年利からの計算方法 3 2023/01/11 15:56
- 数学 ∫x/(x^2+2x++1)^2 これの積分の仕方がわからないので教えてください。 4 2023/06/23 17:16
- 数学 sin^2xを置換積分法を使用して積分したらどのようになりますか? 答えは1/2x-1/4sin2x 4 2022/07/24 22:11
- 数学 積分の面積公式について |a|/6(β-α)^3 −1/6(β-α)^3 1/6(β-α)^3 この 3 2023/05/11 13:42
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
一番最初にネットにつないだのはいつ?
ネットユーザーもいろんな世代が生まれていますが、始めて接続したときのワクワクは同じはず! 人生で一番最初にネットに接続したときの思い出を教えて下さい。
-
モテ期を経験した方いらっしゃいますか?
一生に一度はモテ期があるといいますが、みなさんどうですか? いまがそう! という方も、「思い返せばこの頃だったなぁ」という方も、よかったら教えて下さい。
-
自分の通っていた小学校のあるある
進学したり大人になってから、「あれって自分の小学校だけだったのかな」と思うことありますよね。 逆に「他の小学校ってそんなことするの!?」と思ったり。 そんな「自分の通っていた小学校」のあるあるを教えてください!
-
店員も客も斜め上を行くデパートの福袋
シュールを通り越して店員も客も斜め上を行くデパートの福袋に入ってそうなものを教えて下さい。 よかったらレビューもしてください。
-
積分 ∫√(4-x^2)dxについて
数学
関連するカテゴリからQ&Aを探す
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
不定積分です
-
cos(有理数*2π)=有理数となるの...
-
写真の(3)の問題の解説の1行目...
-
cos 20°を代数的に求める
-
サイン、コサイン、タンジェン...
-
cosθ+cos2θ+cos4θ
-
複素数を引数とする(?)ベッ...
-
三角関数の基本極限について
-
数学ⅠAの問題です。 不等式√3si...
-
三角関数
-
(cos(x))^1/2の不定積分
-
fn(x)の式がよくわかりません
-
複素関数で分からない問題があ...
-
インテグラル(cosx/(1+sinx))dx...
-
数学Ⅲの不定積分、置換積分の範囲
-
積分
-
3回微分の計算
-
この問題の解説をお願いします。
-
cos2θ=2(cosθ)^2-1ですよね・・・
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
eの2πi乗は1になってしまうんで...
-
1+cosθをみると何か変形ができ...
-
cos(2/5)πの値は?
-
数学の質問です。 0≦θ<2πのとき...
-
フーリエ級数|cosx|
-
△ABCにおいてAB=4、BC=6、CA=5...
-
cos2x=cosx ってなにを聞かれ...
-
e^2xのマクローリン展開を求め...
-
複素数の問題について
-
三角関数で、
-
角の三等分線の長さ
-
積分
-
0 ≦θ ≦πのとき cos(2θ+π/3)=cos...
-
cosθやsinθを何乗もしたものを...
-
二等辺三角形においての余弦定...
-
cos60°が、なぜ2分の1になるの...
-
高校数学 三角関数
-
1/ a + bcosx (a,b>0)の 不定積...
-
長方形窓の立体角投射率
-
複素数zはz^7=1かつz≠1を満たす...
おすすめ情報