人に聞けない痔の悩み、これでスッキリ >>

数学Ⅲ 極形式

質問 arg zの計算方法がよくわからないです。

問、複素数z=r(cosθ+isinθ)とするとき
-z を求めよ。

解答、arg(-z)=arg z +π=θ+π

となるのですが、
なぜ、arg(-z)=arg z +πとなるか。
図で考えた方がはやいし分かりやすいです。arg z なんか計算しない方が良くないですか?

質問者からの補足コメント

このQ&Aに関連する最新のQ&A

A 回答 (3件)

普通に計算するの結構難しいですけど



-1 = 1(cosπ + isinπ)
-z = z*(-1)
= r(cosθ + isinθ) * 1(cosπ + isinπ)
= r(cos(θ+π) + isin(θ+π))

もしくは
-z = -r(cosθ + isinθ)
= r(-cosθ - isinθ)
= r(cos(θ+π) + isin(θ+π))
よって、arg(z) = θ+π
これが普通に計算する方法です
-1を極座標表示する、もしくはa*cosθ + b*sinθ = k(cos(θ+Φ) + isin(θ+Φ))の計算が必要になり、Φとkを思いつく必要があります

図で考えると、マイナス倍されているので原点を中心に反対側(距離は変わらず)に来ます
よって、arg(z) = θ+π

どちらが簡単かは人によるかと
私は後者のほうが簡単ですが
    • good
    • 1

解答の書き方も悪いと思います。


正確には、-z=r(cos[θ+π]+isin[θ+π])でしょう。
参考書ならば、極形式の理解が出来ているという前提で、偏角(arg)がπ増える変換だと言う事を明示する為にそう書いたのかもしれません。
積の公式の練習問題ですから、そのような表現になったんでしょう。
    • good
    • 1

-zを求めよなんて曖昧な問題が出題されるわけ


ないし、なんでarg(-z)が解答なのか
さっぱりわからんです。

「計算しない方が良くないですか?」の質問の意図も
さっぱり伝わってきません。

問題を正確に写し、疑問点を正確に書いて下さい。
    • good
    • 4

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q複素関数でのθの求め方

z = 1 - i
w = -√3 + i
と与えられていて、
z*w = 1 - √3 + (1 + √3)i
になりますよね。
このときzwの偏角を求めろと言われたらどう計算すればいいのでしょうか?

自分は, z=-45°、w=150°
だからz*wの偏角はarg(zw)=arg(z)+arg(w)
をつかって、偏角は105°としたんですが、ほかの求め方はないんでしょうか?
教科書でarg(zw)=arg(z)+arg(w)の式が出てくるのはさらにあとなので、これをつかわないで求めることはできないんでしょうか?
久しぶりに復習していて頭がかなり鈍ってるんでよろしくお願いします。

Aベストアンサー

z=√2{cos(-45°)+isin(-45°)}
w=2{cos(150°)+isin(150°)}

zw=2√2{cos(-45°)+isin(-45°)}{cos(150°)+isin(150°)}
=2√2[{cos*cos-sin*sin}+i{sin*cos+cos+sin}] (-45°,150°は省略)
=2√2{cos(-45°+150°)+isin(-45°150°)}
=2√2{cos(105°)+isin(105°)}

∴zwの偏角は105°

こんな風に頑張って計算して求めればいいのではないでしょうか?

arg(zw)=arg(z)+arg(w)を知っているのなら、
これを使って求めても問題ないと思いますが。

Q偏角を表す「arg」の読み方

 どなたか教えて下さい!!

偏角を表す記号「arg」はなんて読めばいいのでしょうか?
 
 至急お願い致します。m(__)m

Aベストアンサー

とりあえずオンライン辞書として使ってみたらどうでしょう?

参考URL:http://www.alc.co.jp/sa_menu.html

Q複素数の計算と偏角がわかりません。

見ていただきありがとうございます。

この質問がわかりません。

-1/√3+iの絶対値の2乗は○/○、偏角は○/○π(ただし、偏角は0以上、2π未満とする。)

/は分数の線とし、√の後の数字は√の中に入ってるとし、iは虚数とする。

この問題がわかりません。
答えは持ってます。

もしとき方がわかる方がいましたら、回答よろしくお願いします。

Aベストアンサー

1) 複素数 z=x+iy の絶対値は次の式で求められます。
  |z|=√(x^2+y^2)

  |-1/√3+i|^2
 =1/3+1
 =4/3

(∴ |z|=2/√3 )

2) 偏角θ (0≦θ<2π)は次式で求めます。
  tanθ=y/x
  ただし、この式では 周期π で解が出てきますので、複素数zを極座標表示して 元の複素数になっているか確認します。
  (複素平面上の第2象限にある解を求めるという方法でもOKです。)

  tanθ=1/(-1/√3)=-√3
 ∴θ=2π/3, 5π/3

 θ=2π/3 のとき
   z=2/√3 { cos(2π/3) + i sin(2π/3) }
    =-1/√3 + i
  となり、元の複素数に一致する。

 θ=5π/3 のとき
   z=2/√3 { cos(5π/3) + i sin(5π/3) }
    =+1/√3 - i
  となり、元の複素数の符号が判定していて不一致。

 以上のことから、偏角 θ=2π/3 と求められます。

1) 複素数 z=x+iy の絶対値は次の式で求められます。
  |z|=√(x^2+y^2)

  |-1/√3+i|^2
 =1/3+1
 =4/3

(∴ |z|=2/√3 )

2) 偏角θ (0≦θ<2π)は次式で求めます。
  tanθ=y/x
  ただし、この式では 周期π で解が出てきますので、複素数zを極座標表示して 元の複素数になっているか確認します。
  (複素平面上の第2象限にある解を求めるという方法でもOKです。)

  tanθ=1/(-1/√3)=-√3
 ∴θ=2π/3, 5π/3

 θ=2π/3 のとき
   z=2/...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q2階微分d^2y/dx^2を詳しく教えてください

微分=傾き=tanθ=dy/dxと言うのは入門書でなんとかわかったのですが
2階微分=傾きの変化率(傾きの傾き)=d^2y/dx^2
のこのd^2y/dx^2がなぜこうなるのかぜんぜんわかりません。
dy/dxがどう変化してd^2y/dx^2となるのか教えてください。
いろいろ本やネットで調べましたが傾き=tanθ=dy/dxまでは入門書でも
詳しく書かれているのですがd^2y/dx^2へはどの解説でもいきなり飛んでいってしまいます。

Aベストアンサー

表記の仕方ですか?
dy/dxは 
yをxで微分するということです
2階微分はdy/dxをさらにxで微分するということです
dy/dxのyのところをdy/dxにおきかえれば
d(dy/dx)/dx=d^2y/dx^2
見た目ではdが2回掛かっているからd^2
dxの部分も2回掛かっているのでdx^2なんですが
dを1つの変数とみたり、dxを1つの変数と見てたりして分かりにくいかもしれません
これはそう決めたからなんです
ある程度覚えるしかないです

Qe^iθの大きさ

今日読んだ本に

絶対値(e^iθ) = √cosθ^2+sinθ^2 = 1

と書いてありました。
オイラーの公式はe^iθ=cosθ+i sinθですよね

絶対値(e^iθ) =√e^i2θ=cos2θ+ i sin2θ=1

とド・モアブルの定理を使った式でもできているんですか?
上の式も下の式もよくわかりません
どなたか両方詳しく教えて下さい。

Aベストアンサー

絶対値(e^iθ) =√e^i2θ=cos2θ+ i sin2θ=1

この部分は、実数rに対しては、|r|=√(r^2)となるのですが、
複素数cのたいしては、
|c|=√(c*(cの共役複素数))
となります。
(e^iθ)の共役複素数は(e^-iθ)ですから、

絶対値(e^iθ) =√((e^iθ)*(e^-iθ))=√(e^0)=√1=1
となります。

実数と複素数では絶対値の計算が少し異なります。

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html

Qタンジェントとアークタンジェントの違い

タンジェントとアークタンジェント、サインとアークサイン、コサインとアークコサインの違いをすごく簡単に教えてください。

Aベストアンサー

タンジェントやサイン、コサインは、角度に対する関数です。
例えば
 tan60°=√3
のような感じで、角度を入力すると、値が出てきます。

逆に、アークタンジェントなどは、数値に対する関数です。
 arctan√3=60°
などのように、数値を入力すると角度が出てきます。

そして、タンジェントとアークタンジェントの関係は、
springsideさんも書いてありますが、逆関数という関係です。
逆関数というのは、原因と結果が逆になるような関数です。
例えば、
  45°→タンジェント→1
  1  →アークタンジェント→45°
のように、「1」と「45°」が逆の位置にありますよね?
こういう関係を、「逆関数」というんです。

どうでしょう、わかりましたか?

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む


人気Q&Aランキング