��������ᅫ�Z���ᅫ�z
の検索結果 (8,374件 21〜 40 件を表示)
複素数平面について質問です。 点Zが原点Oを中心とする半径1の円上を動く時、 ω=(6Z-1)/(3
…複素数平面について質問です。 点Zが原点Oを中心とする半径1の円上を動く時、 ω=(6Z-1)/(3Z-1)を満たす点ωがどのような図形を描くか、について、図形的に解くにはどうすればいいか教え...…
数学の質問です。 (x-y-z+w)(x-y+z-w)において s=x-z t=z-wとおくと (s
…数学の質問です。 (x-y-z+w)(x-y+z-w)において s=x-z t=z-wとおくと (s-t)(s+t) となるそうなのですが、右のカッコ内には-z+wがあるのにどのように置き換えたのかが分かりません。 解説お願い致しま...…
P値とZ値の関係を教えてください。z値が2.8SD以上の場合はp値0.
…P値とZ値の関係を教えてください。z値が2.8SD以上の場合はp値0.005と同様だということを聞いたのですがどのような計算でこの関係が求められるのかご存知の方がいれば教えてください。…
座標空間の軸を設定するとき、x,y,zの軸の位置は図のようにx,y,zはどこにとっても良いのでしょ...
…座標空間の軸を設定するとき、x,y,zの軸の位置は図のようにx,y,zはどこにとっても良いのでしょうか。理屈とともに教えていただきたいです。…
a(n)=1/(n+1)! lim[z->π/2](d/dz)^(n+1)(z-π/2)tan(z)
…a(n)=1/(n+1)! lim[z->π/2](d/dz)^(n+1)(z-π/2)tan(z)の式においてn=1の時のa(1)の値はいくつでしょうか?…
画像において、質問がございます。 ①,何のためにg(z)=(z-π/2)tan(z)を作ったのでしょ
…画像において、質問がございます。 ①,何のためにg(z)=(z-π/2)tan(z)を作ったのでしょうか? g(z)=tan(z)/(z-1/2)^(n+1)ではなかったのでしょうか? ②,なぜ、g(z)=(z-π/2)tan(z)ではなく、g(z)=(z-π/2)tan(z)...…
今更で申し訳ないのですが、疑問が2つあります。 ①g(z)=tan(z)(z-π/2)でz→π/2(
…今更で申し訳ないのですが、疑問が2つあります。 ①g(z)=tan(z)(z-π/2)でz→π/2(z=π/2)の時は、g(z)の式は収束する為、コーシーの積分定理によってa(n)は0になると思ったのですが、なぜ画像のよ...…
質問1, a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-
…質問1, a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)tan(z)] に含まれるg(z)=(z-π/2)tan(z)の留数(residue)を求めるために、 g(z)をテイラー展開します。 展開した式から(z-π/2)の係数を取り出します。 取り...…
「f(z)=1/(z^2-1)に関して ローラン展開を使う場合、マクローリン展開を使う場合、テイラー
…「f(z)=1/(z^2-1)に関して ローラン展開を使う場合、マクローリン展開を使う場合、テイラー展開を使う場合で、 それぞれ、zが0.001の時の近侍値を求めるまでの過程の計算を教えて下さい。」 ...…
a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)t
…a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)tan(z)] に含まれるg(z)=(z-π/2)tan(z)の留数(residue)を求めるために、 g(z)をテイラー展開します。 展開した式から(z-π/2)の係数を取り出します。 取り出し...…
「 f(z)=Σ_{n=-∞~∞}a(n)(z-a)^n(ローラン展開の式)より
…「 f(z)=Σ_{n=-∞~∞}a(n)(z-a)^n(ローラン展開の式)より、マクローリン展開はnが正の範囲でしか展開できないため、 n=0~∞として、またa=0(aは近似したい位置のx座標であり、このx座標が0の時、...…
f(z)=(z^2-1)のテイラー展開とマクローリン展開とローラン展開について質問があります。 質問
…f(z)=(z^2-1)のテイラー展開とマクローリン展開とローラン展開について質問があります。 質問1, f(z)=(z^2-1)のテイラー展開とマクローリン展開の導き方を詳しい過程の計算を用いて教えて頂...…
2024.5.8 08:24の質問の 2024.5.11 16:58の解答の 「f(z)がz=aでj
…2024.5.8 08:24の質問の 2024.5.11 16:58の解答の 「f(z)がz=aでj位の極をもつとき f(z)=Σ{n=-j~∞}a(n)(z-a)^n g0(z)=f(z)(z-a)^j a(n)={1/(n+j)!}lim[z->a](d/dz)^(n+j)f(z)(z-a)^j a(n)=res(f(z)/(z-a)^(n+1),a) gn(z)=f(z)/(z-a)^(n+1) と...…
平面応力状態でなぜz軸応力がゼロか?
…「板の厚さが薄い場合z軸方向の応力は近似的に0とみなしてよく、この状態を平面応力という」と教科書には書かれてありますが、なぜ厚さが薄いと厚さ方向の応力を0とみなしてよいのでし...…
任意の文字列のアルファベットのカウント
…任意の入力された文字列に対し、出現頻度の表示をしようと思って以下のように考えました。 #include int main(){ int count[26]; char c; while((c=getchar())!='\n'){ if(c>='a'&&c='A'&&c…
(a、bは定数) z、x、yという変数があったときz=ax+byという式があったら微分形は(δz/δ
…(a、bは定数) z、x、yという変数があったときz=ax+byという式があったら微分形は(δz/δx)y=a、(δz/δy)x=b でいいですか? 全微分形式で書くとdz= (δz/δx)y.dx+ (δz/δy)xdy ですか? 全微分形式と微分...…
x^3+y^3+z^3
…こんばんは。 よろしくお願いいたします。 x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)+3xyz になるのどうしてでしょうか。 どうぞ、よろしくお願いいたします。…
検索で見つからないときは質問してみよう!