若い頃、数学の教師に1+1は何故2なのか、と質問をしたことがあります。
そのときの答えは、「何でもいいんだよ」の一言でしたが何となく納得していました。
でも、1+1が2であることは集合論から導き出された結果だと思うのですが、人間がこの1として認識する判断基準はどこからきているのか、考えているうちに判らなくなりました。
何故人は、異なるものを数として認識するのでしょうか。
何故、異なるものの足し算が出来るのでしょうか?

異なるものとは、
男1+女1=2人  大人+子供=2人 花のコップ+お皿=2つ
たぬき1+きりん1=2匹 などです

このQ&Aに関連する最新のQ&A

A 回答 (14件中11~14件)

"1"というのは端的に言えば「単位」です。


つまり基準となる量を意味する概念です。
ですから、厳密に量として1である必要はないのです。

200mlの水が入ったコップ1杯あったとすると、
"ml"という単位では200でも「杯」とみなしたら1になりますよね。

また、何をその「基準」にするかは主観によるでしょう。
具体適例はこれまで回答された方々の通りです。

人類という「基準」ならば、大人1人と子供1人は
それぞれ1ずつですから、合計2になりますが、
成人という「基準」からすると子供1人は対象外になり
足し合わせることができなくなります。

目的に合った「基準」による「単位」を作り、
その範疇で(整数の)四則演算を行うわけです。

このような考え方だと、テーブルの上の紙1枚と
水1リットル入り容器もそれぞれ「1」とみなせますよね。
    • good
    • 0
この回答へのお礼

回答していただきありがとう御座います。
基準をどこに置くかによって決定される訳ですね。観点をどこに置くかが計算の基準となるということで考えればよいのでしょうか。

お礼日時:2001/09/10 16:08

1+1がなぜ2になるかの回答ですが、10進法で数えているから


というのが私なりの結論です。

10進法の世界では、
 1に1を加えると2になる
 2に1を加えると3になる
 3に1を加えると4になる
 ....
 9に1を加えると桁上がりして10になる
という考え方をします。


では1+1が2にならないことはあるかと言えば、実はあります。
ブール代数(2進数)の世界では1+1は2にならず、10になります。

ブール代数では、
 0+0 = 0
 0+1 = 1
 1+1 = 10
という感じですね。


元々、数学というのは観念の世界です。「これが1だ」という観念を定義した
ところから、数学的な思考が始まります。
何を1として認識するかの基準は、もはや数学を超え、哲学の分野になってしまう
のではないかと、私は考えています。
    • good
    • 0
この回答へのお礼

回答いただきありがとう御座います。
>何を1として認識するかの基準は、もはや数学を超え、哲学の分野になってしまうのではないかと、私は考えています。
まさにそうなのです。そこのところを考えているうちに、訳がわからなくなってしまって。単純ゆえに難しいということなのでしょうか。

お礼日時:2001/09/10 16:03

1+1=2 は なぜそうなるのか・・・そう定義したから でしょうね。


山という字が目の前にそびえる大きい地形を意味するのと 同じだと思います。

 異なるもの…
 たとえば、猟をしていて、獲物が5体とれたとします。あくまで目的は食料とするわけですから、内訳がなんだろうと構わないわけなんじゃないですかね。
 でも、動物園みたいにきちんと管理しているところだと、内訳は狸2匹に、狐3匹というように、内訳の方が重要になる。

 映画だと料金体系から性別はあまり重要でなく、子供・大人ごと何人。でも、合コンなどでは、男女何人ずつ。

 要するに使用する目的により、使い分けしている…ということだと思いますが。
    • good
    • 0
この回答へのお礼

回答いただきありがとう御座います。
>そう定義したから 
難しいお答えですね。このことについて少し考えてみます。
得たい結果を導き出すための設問と言う事なのでしょうか。

お礼日時:2001/09/10 14:46

数学面からの回答ではないですが、



> 何故、異なるものの足し算が出来るのでしょうか?

それは、異なるものである、とは思っていないから、ではないでしょうか。

ものの見方には、共通化・汎用化という面があります。

男・女 → 大人
大人・子供 → 人間
花のコップ・お皿 → 容器
たぬき・きりん → 哺乳類

場面によって、どこまで汎用化するかが変わってきます。さすがに同じ1でも
紙1(枚)+水1(リットル)=2 とは思わないですよね。

同じものであれば、二つを足すことに関しては、疑問が無いのですよね?
    • good
    • 0
この回答へのお礼

回答していただきありがとう御座います。
物の見方によって導き出す、集合という概念が共通化・汎用化に結びついているという意見には賛同できます。
>さすがに同じ1でも
>紙1(枚)+水1(リットル)=2 とは思わないですよね。
そうでしょうか? もし「机の上に」との説明がつけば、机上にある物としての括りになるわけですから、その場合は2になります。
ごめんなさい屁理屈みたいで、でも私が知りたいのはそこのところなのです。

お礼日時:2001/09/10 14:33

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q大学の単位数越えについて

大学3年生のものですが現在単位数(自分の所は128単位)が卒業必要単位数に達してしまいました。
しかし時間も余っていますし特に必要は無いですが後期の授業をいくつか取ろうと思っています。
そこで気になったのですがやはり就職活動の面接の際単位数は多ければ多いほどが有利に評価されるのでしょうか?
そもそも必要単位ギリギリだと帰って評価が下がるのでしょうか?

なお、後期の授業も取れば単位は128から134になります。

Aベストアンサー

たまたま人事等で採用など実務を担当してきた者に過ぎません。

NO1の回答者の方と同じで驚きました。
採否等に直接100%影響するとは限らないと思いますが、その効率や計画に対する実行力などにおいて充分自己のPRに活かせることかと思いました。

学歴やその授業内容や単位数などによって違いはありますし、学歴等より人物本位であるからこそ、多いからというよりもさらに今後の時間をどう有効に使うか、または使うことを計画しているかということもポイントかと思います。

自分は大学時に卒業の成績の優劣などが就職活動の評価のポイントと噂等で聞いていましたが、実際には関係なく、肝心なのはその内容と時間等をどう活用したかということが中心だったことを思いだしました。

当然、一概には断言できませんが面接等の段階では内定などの段階ではもう必要単位数を取得していること自体が採用側も驚くことがあると思いますが、次第にそれが結果として後の時間を何に費やしたか、またそれにはどういったことに注力したか、そして最終的には学生時代に何を得たか…などが中心になってくると予想されると思います。

解釈次第という面もありますが、今単位取得をしたと面接段階で答えたとした場合、後何にもしないということはないはずなので、学業以外でも学業でも、これは社会人にとっても時間の有効活用と学業や仕事などの計画や実行などが必要で必ずどんな会社であっても仕事でも共通かと思います。

ぜひこの経験や成果を有効にPRされて油断しないで今後自分の挑戦したいことなどに注力されることをお勧めいたします。

あくまで参考程度にでもなれば幸いです。

たまたま人事等で採用など実務を担当してきた者に過ぎません。

NO1の回答者の方と同じで驚きました。
採否等に直接100%影響するとは限らないと思いますが、その効率や計画に対する実行力などにおいて充分自己のPRに活かせることかと思いました。

学歴やその授業内容や単位数などによって違いはありますし、学歴等より人物本位であるからこそ、多いからというよりもさらに今後の時間をどう有効に使うか、または使うことを計画しているかということもポイントかと思います。

自分は大学時に卒業の成績...続きを読む

Q(a+1)(a+2)の計算方法は、 (a+1)(a+2)=a+a+1+2 =2a+3 であっています

(a+1)(a+2)の計算方法は、

(a+1)(a+2)=a+a+1+2
     =2a+3

であっていますか?

Aベストアンサー

式が(a+1)+(a+2)なら、
=a+a+1+2=2a+3で合ってるが、

(a+1)(a+2)なら、(a+1)×(a+2)です。従って
=a*a+1a+2a+1*2
=a二乗+3a+2となります。

Q卒業単位数足りていますか?

ある大学の法学部・法律学科に所属しています。今3年目で来年の春に卒業予定です。
まず質問からいいますと、来年度の履修は必要かどうかです。
どの大学にも卒業所定単位には「必修科目」「選択必修科目」「選択科目」があると思います。現在、必修・選択必修科目はすべてとれているのですが、選択科目がまだ卒業所定単位数に足りていません。
しかし、必修・選択必修科目で必要以上にとれている分、卒業に必要な単位数(124単位)は確保できています。
質問の内容をまとめますと、選択科目で必要な単位数は確保できていませんが、「必修」ではない為、他必修科目等であふれた単位数をカウントされるかどうか、お聞きしたいところであります。
理解しにくい質問ですが、よろしくお願いいたします。

Aベストアンサー

kishinnkさん
結論から先に申し上げると、恐らく大丈夫だと思います。

大学(学部)卒業の最低の要件は、
「必修科目」+「選択必修科目」+「卒業に必要な単位数」+「在籍期間48ヶ月」です。

選択必修の最低履修単位数を超えて履修・習得した単位数は、卒業に必要な単位数に換算できます。
よって、成績表の選択科目の合計単位数が見かけ上少なくても、上記要件を満たしていれば、卒業認定となります。
ただし、選択科目に関しては、学部・学科ごとに卒業単位数に加えることができる科目か等を確認された方が良いと思います。
例えば、他学部や他学科で開設された科目、教員免許取得のための科目、資格取得や就職活動のための特別講座など、卒業単位に含まれない科目も最近は多くありますので、念のため、大学の教務課等で確認をされた方が良いと思います。
また、大学によっては、3年までに卒業に必要単位を全て修得していても、4年の履修届を出さないと、自動的に留年になる大学もあると聞いていますので、念のため、ご確認をお勧めします。

QF_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} の因数分解

F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} 
(n=1,2,3,4,5)
を因数分解せよ、という問題なのですが、どすればよいのでしょうか?

なお、答えは、

F_1=3(b+c)(c+a)(a+b)
F_2=5(b+c)(c+a)(a+b)(Σa^2+Σab)
F_3=7(b+c)(c+a)(a+b)(Σa^4+2Σa^3 b+3Σa^2 b^2+5Σa^2 bc)
F_4=3(b+c)(c+a)(a+b)(3Σa^6+9Σa^5 b+19Σa^4 b^2+35Σa^4 bc+23Σa^3 b^3+63Σa^3 b^2 c)
F_5=11(b+c)(c+a)(a+b)(Σa^8+4Σa^7 b+11Σa^6 b^2+21Σa^6 bc+9Σa^5 b^3+54Σa^5 b^2 c+23Σa^4 b^4+84Σa^4 b^3 c+123Σa^4 b^2 c^2+159Σa^3 b^3 c^2)

のようなのですが、(b+c)(c+a)(a+b)を因数に持つことは分かりますが、残りの因数はどうやってもとめるのでしょうか?

一文字を変数と見て、地道に割り算するしかないのでしょうか?
効率的な計算方法はありますでしょうか?

F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} 
(n=1,2,3,4,5)
を因数分解せよ、という問題なのですが、どすればよいのでしょうか?

なお、答えは、

F_1=3(b+c)(c+a)(a+b)
F_2=5(b+c)(c+a)(a+b)(Σa^2+Σab)
F_3=7(b+c)(c+a)(a+b)(Σa^4+2Σa^3 b+3Σa^2 b^2+5Σa^2 bc)
F_4=3(b+c)(c+a)(a+b)(3Σa^6+9Σa^5 b+19Σa^4 b^2+35Σa^4 bc+23Σa^3 b^3+63Σa^3 b^2 c)
F_5=11(b+c)(c+a)(a+b)(Σa^8+4Σa^7 b+11Σa^6 b^2+21Σa^6 bc+9Σa^5 b^3+54Σa^5 b^2 c+23Σa^4 b^4+84Σa^4 b^3 c+123Σa^4 b^2 c^2+159Σa^3 b^3 c^...続きを読む

Aベストアンサー

最後までは計算していませんが、次の方法でできそうです。
F_n = (b+c)(c+a)(a+b)(Σ[ABC] k_ABC a^A b^B c^C) とおきます。
(ここで、A+B+C = 2n+1 です。)
展開すると、F_n = (a^2 b + 略 + 2abc)(Σ[ABC] k_ABC a^A b^B c^C) です。
そして、F_n を例えば、a で A+2 回偏微分、a で B+1 回偏微分、
a で C 回偏微分、した後、a,b,c に 0 を代入します。
F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} に対しても同じようにします。
このようにすると、例えば C > 0 であれば、
k_ABC (A+2)!(B+1)!(C)! = (2n+1)! となり、係数が得られます。

Q通信制大学の単位修得試験で貰える単位数は?

通信制大学の単位修得試験で貰える単位数は?

私は通信制大学に入ろうと思っていますが、タイトルの通りの疑問があったので質問させていただきます。
単位修得試験に合格すれば単位を貰えるようですが、その単位数はいくつなのでしょうか?
例えば、受講科目が4単位ならば、試験合格によって、いきなり4単位貰えるのでしょうか?
それとも、1回の試験においては1単位しか貰えないのでしょうか?

よろしくお願いします。

Aベストアンサー

大学によりけりです。

私の知っている大学だと、1回の試験で2単位です。
4単位の科目の場合、2回の試験を受けなければならない学校と1回の試験で良い学校がありました。

Q線形です (1)を x+3y-2z=0 x-2y+4z=0 x^2+y^2+z^2=1をもちいて 答

線形です
(1)を
x+3y-2z=0
x-2y+4z=0
x^2+y^2+z^2=1をもちいて
答えが+-の答えになりました
(2)では外せきが8,-6,-5となり
おおきさの5ルート5で割ると
+-の答えにはなりませんでした
どちらが正しいのでしょうか?

Aベストアンサー

外積からでてきた単位べクトルは、外積の定義から、ベクトルa、bに垂直ですよね。
だからそれと正反対のベクトルも、ベクトルa、bに垂直な単位ベクトルだから、これも答えに入れれば
よいのです。つまり外積から出した単位ベクトルの各成分に(-1)をかけた成分のベクトルも答えに
なります。そしてこうして出した2つのベクトルは、先に内積で出した2つのベクトルと一致します。

Q単位数

こんにちは。質問させて頂きます。
ある資格取得の為に、大学の時の単位数を知りたくて 何単位取得したかを知りたいのですが
成績証明書を取ればいいのか、それとも単位取得(修得?)証明書だったのか忘れてしまいました。

自分が取った単位数を知りたい場合、どう大学に問い合わせれば良いのか教えてほしいのです。

宜しくお願いします。

Aベストアンサー

大学の事務局か何かに電話して「○年卒業の○○です」と名乗り、「自分がとった単位数を知りたいが、どうすればいいか」と聞けばよろしいかと思います。
各種証明の発行条件は大学によって異なりますので、ここで質問しても仕方がないのではありませんか?

Q{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

n → ∞のとき、
{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

また、n → ∞のとき、
{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 → π√2/8

らしいのですが、証明がかいてありませんでした。
どうか証明を教えていただけないでしょうか。

Aベストアンサー

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関数 f(x)=√{(1-x^2)/2}
上限関数 g(x,Δ)=√[{(1+Δ)^2-x^2}/2] (但しΔ=1/n)
階段関数 {√{(k+1)+(k+2)+…+n}}/n=√[{n(n+1)-k(k+1)}/(2n^2)]

(1)x=k/nのところで、階段の高い方より上限関数 g(x,Δ)が大きい事を示します。但しk=1~nです。
x=k/nの階段の高い方は√[{n(n+1)-(k-1)k}/(2n^2)]です。
x=k/nの上限関数 g(x,Δ)=g(k/n,1/n)=√[{(1+(1/n))^2-(k/n)^2}/2]=√[{(n+1)^2-k^2}/(2n^2)]
(上限関数) ≧ (階段関数の高い方) を示すには、ルートと分母の(2n^2)が共通なので、
(n+1)^2-k^2 ≧ n(n+1)-(k-1)k を示せば十分です。
{(n+1)^2-k^2}-{n(n+1)-(k-1)k}=n-k+1≧0 より明らかです。

(2)x=k/nのところで、階段の低い方より下限関数 f(x)が小さい事を示します。但しk=0~nです。
x=k/nの階段の低い方は√[{n(n+1)-k(k+1)}/(2n^2)]です。
x=k/nの下限関数 f(x)=f(k/n)=√[{(1-(k/n)^2}/2]=√[(n^2-k^2)/(2n^2)]
(階段関数の低い方) ≧ (下限関数) を示すには、ルートと分母の(2n^2)が共通なので、
n(n+1)-k(k+1) ≧ n^2-k^2 を示せば十分です。
{n(n+1)-k(k+1)}-(n^2-k^2)=n-k≧0 より明らかです。

以上の事から階段関数は下限関数 f(x)と上限関数 g(x,Δ)の間に入る事がわかりました。
下限関数の面積をF,上限関数の面積をG(n),階段関数の面積をA(n)とすると、
F ≦ A(n) ≦ G(n) となります。
F=∫[0→1]f(x)dx=(1/√2)(単位円の面積÷4)=π(√2)/8
G(n)=∫[0→(1+Δ)]g(x,Δ)dx=(1/√2)(半径(1+Δ)の円の面積÷4)={π(√2)(1+Δ)^2}/8 (但し Δ=1/n)
つまり階段関数の面積はπ(√2)/8以上{π(√2)(1+1/n)^2}/8以下になります。
n→∞で階段関数の面積はπ(√2)/8に収束します。

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関...続きを読む

Q旧ソ連における回転数の単位

 エンジン等の回転数を表す単位として、日本ではrpmが使用される事が多いのですが、rpmはrevolutions per minuteの略ですから、英語圏において使われ始めた単位であると思われます。
 そうしますと、英語圏の中心的な国家であるアメリカ合衆国とかっては対立していた、冷戦期の旧ソビエト社会主義共和国連邦では、エンジンの回転数を表記する場合に、rpm以外の単位が使用されていた可能性もあるかと思いますが、実際にはどの様な単位が主に使用されていたのでしょうか?
 出来れば、軍用の航空機用ガスタービンエンジン(ジェットも含む)の回転数を表す際に使用されていた単位を御教え願います。(おそらく民生用エンジンと同じ単位だとは思います)
 尚、知りたいのはあくまで主用されていたエンジン回転数の単位に関してであり、一部の特殊な分野においてのみ使用されていた単位は除外して頂きたいと思います。

Aベストアンサー

ロシア語上で「RPM」を何というか、興味が湧いたので調べました。
まず翻訳サイトを通しますと、こうなりました。
http://translate.google.co.jp/#en/ru/%EF%BD%92%EF%BD%90%EF%BD%8D
「число оборотов в минуту」は単語順に、
「number speed per minute」に相当します。

そのままロシア語wikiを引くと回転計がありました。
http://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D0%BE%D1%80%D0%BE%D1%82_%D0%B2_%D0%BC%D0%B8%D0%BD%D1%83%D1%82%D1%83
「об/мин, 1/мин, мин-1」とも略記する様です。wikiの写真は普通に1/min
になってますが、「об/мин」の例はここにありました.
http://achtungskyhawk.wordpress.com/page/7/

ただ、「>出来れば、軍用の航空機用ガスタービンエンジン(ジェットも含む)の回転数
を表す際に使用されていた単位を」とのことですが、レシプロエンジンなら飛行機も
ヘリコプターもタコメーターはRPM表示ですが、通常は航空機のガスタービンエンジンの
回転計はパーセント表示です。
http://www.jal.com/ja/jiten/dict/p173.html#05
なかなかソ連/ロシア製のものの証拠が見つかりませんでしたが、かろうじてMIG-23の
計器盤画像はありました。
http://www.airliners.net/photo/Czech-Republic--/Mikoyan-Gurevich-MiG-23ML/1167720/L/
赤緑アンバーのランプが並ぶアナウンシエーターパネルの上に「100%」と書かれた
計器があり、どうも3ヶ国語が並んで略記でなくそのまま「回転」と書かれているように
思えますが、これがそうだと思います。

ロシア語上で「RPM」を何というか、興味が湧いたので調べました。
まず翻訳サイトを通しますと、こうなりました。
http://translate.google.co.jp/#en/ru/%EF%BD%92%EF%BD%90%EF%BD%8D
「число оборотов в минуту」は単語順に、
「number speed per minute」に相当します。

そのままロシア語wikiを引くと回転計がありました。
http://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D0%BE%D1%80%D0%BE%D1%82_%D0%B2_%D0%BC%D0%B8%D0%BD%D1%83%D1%82%D1%83
「об/мин, 1/мин, мин-1」とも略記する様です。wikiの写真は普通に...続きを読む

Q放物線y=(1/2)x^2+xと円(x-1)^2+(y+1)^2=2の

放物線y=(1/2)x^2+xと円(x-1)^2+(y+1)^2=2の両方に接する直線の方程式を求めよ

という問題が解けません。

高2が分かるような解き方がありましたら教えてくださいませんか?;w;

Aベストアンサー

求める直線をy=ax+bとおいて、
(1)放物線とこの直線が接する→(1/2)x^2+x=ax+bとしてこの二次方程式が重解を持つ
(2)円と直線が接する→円の中心からy=ax+bまでの距離が円の半径に等しい

この二つを連立させればaとbが求められます。


人気Q&Aランキング

おすすめ情報