No.4ベストアンサー
- 回答日時:
一般の楕円体はちょっとかんべんしてもらって,
回転楕円体
(1) (x^2+y^2)/a^2 + z^2/c^2 = 1
の表面積に焦点を絞って回答します.
残念ながら No.1 と No.2 の回答は不正解のようです.
No.1 は楕円の面積の π×(長半径)×(短半径) から類推されているような
気がします.
一つの軸をスケール変換したときに,
平面図形の面積あるいは立体図形の体積,などはスケール変換と簡単に関連づけられて,
円の面積から楕円の面積,球の体積から楕円体の体積,
など求めることが可能です.
しかし,楕円の周長や,楕円体の表面積はそうはいきません.
参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=27302
No.2 は方針は合っていますが,傾きのことを忘れています.
曲線の長さを求めるときに √{1+(dy/dx)^2} の因子に相当するものを
考慮しないといけません.
z 一定の面での切り口は円で,その半径 R は(1)で x^2+y^2 = R^2 とおいたものですから
(1) R = (a/c)√(c^2 - a^2)
です.
円周はもちろん 2πR.
z~z+dz の範囲からの表面積への寄与 dS は
(2) dS = 2πR √{dR^2+dz^2} = 2πR √{1+(dR/dz)^2} dz
下図の斜線部が √{dR^2+dz^2} です.
/ ↑
/│ │
/ │ dR
/ │ │
/ │ ↓
│ │
│ │
R│ │
│ │
z z+dz
あとはこれを積分すればよく
(3) S = ∫{-c~c} 2πR √{1+(dR/dz)^2} dz
を(1)を考慮して計算すればOKです.
ちょっと計算してみるとわかりますが,積分の本質的部分は
(4) ∫{-c~c} √{c^4 + (a^2-c^2)z^2} dz
で,a>c か a<c かの分類が必要です.
結果は
a>c のとき
(5) S = 2πa^2 + [πac^2/√(a^2-c^2)] log {[a+√(a^2-c^2)]/[a-√(a^2-c^2)]}
a<c のとき
(6) S = 2πa^2 + [2πac^2/√(c^2-a^2)] arccos(a/c)
です.
a=c ならもちろん S = 4πa^2.
回転楕円体でなくて,一般の楕円体
(7) x^2/a^2 + + y^2/b^2 + z^2/c^2 = 1
なら,z 一定の切り口が楕円ですし,傾きも方向によって異なります.
表面積の公式
(8) ∬ √{1+(∂z/∂x)^2+(∂z/∂y)^2} dx dy
を使う方がわかりやすいかも知れません.
No.3
- 回答日時:
かなり複雑な計算式になりますね。
参考URLに公式があります。
色々な公式集はこちら。
↓
http://www.asahi-net.or.jp/~jb2y-bk/math/heartko …
参考URL:http://www.asahi-net.or.jp/~jb2y-bk/math/daenmen …
No.2
- 回答日時:
まず楕円の式を y について解き、次にその y を半径として
2yπ=円周 が出ますね。それを左端から右端まで積分すれば出ると思う
のですが・・・・(実際には2×まん中から右端までになると思いますが)。
間違っていたらすみません。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 工学 面積Sの円形導体板を間隔dで平行に配置したコンデンサの問題てす。 (1)静電容量C0をSもdとε0を 1 2023/05/31 19:07
- 物理学 歌口と楕円形の太鼓 1 2023/05/15 23:21
- 数学 下の三角形の表面積の求め方を教えて下さい。 円と扇形に分けて考える時、扇形の角度を求めてから解きたい 9 2022/04/14 15:26
- 物理学 写真の問題についてですが、なぜ円柱の表面積を考える時、側面の表面積だけで底面の円の面積は考えないので 4 2023/02/18 12:59
- 数学 数学の質問です。弧度法で扇形の孤の長さや面積を求める公式の意味についてです。 それぞれの円周・面積の 3 2023/01/09 12:38
- 数学 ベクトル解析 ガウスの定理 問題 (1,0,0)、(0,1,0)、(0,0,1)、(0,0,0)を頂 7 2023/07/18 21:43
- 数学 画像の問題について質問です。問題式を楕円の式に変形して、積分範囲を0<=x<=a √(z^2-1) 3 2022/08/29 13:44
- Visual Basic(VBA) VBAプログラム初心者です。 以下の問題のプログラムを表記してみたのですが、実行するためには、どこを 4 2023/01/19 20:04
- 物理学 どうして放物線ですか? 15 2023/06/11 09:53
- 車検・修理・メンテナンス プリウスの助手席のドアを柱にぶつけて直径10cmくらい楕円のように剥がれてしまいました。 すぐに相見 8 2023/03/15 12:04
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報