マンガでよめる痔のこと・薬のこと

パワーポイントで作成したグラフに標準偏差をつけたいのですが、どのようにしたらよいのでしょうか?グラフは棒グラフです。それぞれの値で一定の標準偏差はつけることができるのですが、任意の値をつけることができません。エクセルのグラフを貼り付けるのではなく、パワーポイントのみでグラフを作成するにはどうしたらよいでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (6件)

 No.5の続きです。


 Y誤差範囲のことですか?
 それならばそれぞれの棒グラフで右クリックし「データ系列の書式設定」で(系列を別にしましたので)それぞれ指定できます。
    • good
    • 0

 No.4の続きです。


>エクセルでグラフを作成したときの標準偏差のつけ方をご存知でしょうか?
 いいえ、知りません。
    • good
    • 1

 No.3の続きです。


 棒グラフの棒の先端に任意の数値を表示したいということでしょうか?
 それならば、以下のようにしてはいかがでしょうか。
 便宜上、データシートの一番左の列をZ列とし、以下右へ順に、A列、B列、C列、D列、とします。また、一番上の行を0行とし、以下下へ順に、1行、2行、3行、4行、とします。
 都市1の名称をA0へ、都市2の名称をB0へ、都市3の名称をC0へ、都市4の名称をD0へ横へ順に入力します。
 次に、都市1の標準偏差をZ1へ、都市2の標準偏差をZ2へ、都市3の標準偏差をZ3へ、都市4の標準偏差をZ4へ、縦に順に入力します。
 それから、都市1の気温をA1へ、都市2の気温をB2へ、都市3の気温をC3へ、都市4の気温をD4へ、斜めに順に入力します。
 今度は、グラフと凡例の間あたりを右クリックし、「グラフの種類」を選び、「集合縦棒」を選び「OK]。
 もう一度、グラフと凡例の間あたりを右クリックし、「グラフのオプション」を選び、「データラベル」の「ラベルの内容」を「系列名」にして「OK]。
 最後に、棒グラフの棒の上で右クリックし、「データ系列の書式設定」を選び、「オプション」の「棒の重なり」を「100」にして「OK」。
 これでどうでしょうか。

この回答への補足

エクセルでグラフを作成したときの標準偏差のつけ方をご存知でしょうか?それと同様にしたいのですが、可能でしょうか?

補足日時:2006/02/20 22:28
    • good
    • 0

 [グラフの挿入]ボタンを押すと、棒グラフが表示されデータシートが表示されますので、A1~D1に1、2、3、4、と順に入力すればよいと思います。

この回答への補足

そのようにすると、棒グラフが表示されるだけで標準偏差はつきません。A~DはデータシートのA~Dではくグラフの項目です。たとえば横軸に都市、縦軸に気温を棒グラフを表示し、さらにその上端に標準偏差をつけるにはどうしたよいのでしょうか?

補足日時:2006/02/19 23:55
    • good
    • 0

 A~Dの値から計算される標準偏差は1つしかないですよね?


 adgjm11さんのおっしゃる標準偏差の意味が判らないのですが。
 母集団は何でしょうか?
 AにはAの母集団が(どこかに)あり、その標準偏差が既知ということならば、データテーブルにその標準偏差の値をそのまま入力すればよいと思います。
 B~Dも同様です。

この回答への補足

標準偏差はすでに計算済みです。たとえばAの標準偏差が1、Bが2、Cが3、Dが4のときはデータテーブルのどこにその値を入力すればよいのでしょうか?

補足日時:2006/02/19 22:10
    • good
    • 0

>それぞれの値で一定の標準偏差はつけることができる


 一定の標準偏差をつけるとは、どういう意味でしょうか?
 データテーブルを開いて値を入力すれば、任意のグラフが描けると思います。

この回答への補足

棒グラフの横軸の項目がA~Dまでの4つあるとします。A~Dまで同じ範囲の標準偏差はつけることはできますが、それぞれの項目ごとに標準偏差の値を変えることは可能でしょうか?

補足日時:2006/02/19 20:06
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエクセルのグラフ;各々のポイントに異なった標準偏差の入れ方

上手く説明できないのですが、、、。教えて下さい。

エクセルの折れ線グラフに標準偏差の値を入れ込む方法は判るのですが、一つの値を入れ込むと、すべてのポイントに反映されてしまいます。各ポイントで、違った値の標準偏差を入れたいのですが、どうすればよいでしょうか?
宜しくお願いいたします。

Aベストアンサー

先ず、例えば、A列に折れ線グラフ用の数値を入れます。B列に、標準偏差とする数値をA列の数値の横に入れます。
次に、折れ線グラフを設定します。
さらに、「データ系列の書式設定」 → 「Y誤差範囲」 → 「誤差範囲」 → 「指定」でB列を設定します。
これで、各ポイントに違った値の標準偏差を入れることが可能になります。
なお、これは各ポイントと標準偏差の値だけでグラフを作成する一例です。

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Qエクセルの棒グラフで有意差を表したい

放射線照射後、細胞の数が1週目、2週目、3…とだんだん減っていきました。
この棒グラフ(縦軸:細胞数、横軸:時間)に有意差を示したいのですが(エラーバー?)どうすればいいかさっぱりわかりません。

教えてください!

すみません、おおざっぱで。。

Aベストアンサー

>この棒グラフ(縦軸:細胞数、横軸:時間)
横軸が時間なら、連続データなので、折れ線グラフでは。一般的には、棒グラフは誤りですが、連続データではないのですか、それとも何か意図がありますか。

>(エラーバー?)どうすればいいか
棒グラフの上部に、+1σなどで表し、グラフの脚注に、data indidate mean+S.D.などと表します。外国の人は、SDでなく、SEが多いようです。
 生物系の専門雑誌ではありふれたグラフですから、チェックして下さい。
それとも、エクセルなどでの表し方でしょうか。その場合は、ソフト、バージョンなどを書いて下さい。

 周囲の指導者などに訊け、というのが一般論ですが。

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q散布図に有意差ありを示す情報を入れたいのですが・・

実験開始時のデータと実験終了時のデータを比べるグラフを散布図でつくりました(色々検討した結果、散布図が一番見やすくなりました)。
この散布図の中のプロット点に有意差ありという情報(アスタリスクなど)を入れたいのですが、プロット点が多く、どの点が有意差ありなのかよくわからなくなってしまいます。
何か良い方法はないでしょうか?
そもそも散布図に有意差ありの情報を入れることはあるのでしょうか?

回答よろしくお願いします。

Aベストアンサー

そもそもどんなデータをプロットしているのかわからないが,
そういう時は,ふつうにはマーカの形を変えるか,マーカの色を変えることにするのでしょう。

QWord 文字を打つと直後の文字が消えていく

いつもお世話になっています。
Word2000を使っているものです。
ある文書を修正しているのですが,文章中に字を打ち込むと後ろの字が消えてしまいます。
分かりにくいですが,
「これを修正します。」
という文章の「これを」と「修正します。」の間に「これから」という単語を入れたときに,その場所にカーソルを合わせて「これから」と打つと,
「これをこれからす。」
となってしまいます。
他の文書では平気です。
何か解決する方法があれば教えて下さい。

Aベストアンサー

入力モードが「挿入」(普通の入力)から、「上書き」になってしまっているのだと思われます。
キーボードに[Insert]というキーがあると思いますので、1度押してみてください。

Qカイ2乗検定って何??;;

タイトルのとおりですが…大学で統計の基礎な授業を一般教養で受けています。だけど知らない&説明のない言葉がいっぱぃで、全くついていけません(>_<))
「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、有意水準1%としてカイ2乗検定をして判断する、という問題があるのですが、カイ2乗検定自体、授業でちらっと言葉は使ったものの、計算の仕方、使い方の説明等はなく、まったく手がつかずにいます;;ネットでも調べてみましたが、どう使っていいのかまでは分かりませんでした。
知識の無い私でもわかるようなものがあれば教えて下さいっっ!お願いします。

Aベストアンサー

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布とは,二乗値に関する確率分布と考えることができるのですが,この辺もさらりと流して下さい.

例を使って説明します.今,道行く人にA,B,C,Dの四枚のカードの中から好きなもの一枚を選んでもらうとしましょう(ただし,選んでもらうだけで,あげるわけではありません.単にどのカードを選択仕方の情報を得るだけです).一人一枚だけの条件で,160人にカードを選んでもらいました.
さて,ここで考えてみて下さい.4枚のカードには大きな違いはなく,どれを選んでもかまわない.でたらめに選ぶとなれば,どのカードも1/4で,同じ確率で,選ばれるはずですよね? ならば,160人データならば,Aは何枚ほど選ばれる「はず」でしょうか? 同様に,B,C,Dは何枚選ばれる「はず」でしょうか?
……当然,A=B=C=D=40枚の「はず」ですよね? この40枚という数値はでたらめに(無作為に)選ばれたとしたらどんな数値になるかの【理論値】を意味します.

さて,上記はあくまでも理論値であり,実際のデータは異なる可能性があります.というよりはむしろ違っているのがふつうでしょう.そのような実際に観測された数値を【観測値】と呼びます.
仮に理論値と観測値が以下のようになったとします.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40

当然のように観測値と理論値にズレが生じています.しかし現実と理論が異なるのはある意味当然なのですからぴったり一致することなどありえません.そこで,「ある程度一致しているか(ズレは許容範囲か)」を問題にすることになります.しかし,「ある程度」といわれても一体どのぐらいであれば「ある程度」と言えるのでしょうか? なかなか判断が難しいではないですか?
確かに判断が難しいです.そこで,この判断のために統計学の力を借りて判断するわけで,更に言えばこのような目的(理論値と観測値のズレが許容範囲かどうか)を検討するときに使われるデータ解析法がχ2検定なのです.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40
(3)ズレ    +32   -17   -14   + 9
(4)ズレ二乗 1024   289   196   81
(5)(4)÷(2) 25.6  7.225  4.9  2.025

 χ2=25.6+7.225+4.9+2.025=49.25

計算過程をさらりと書いていますが,早い話が観測値と理論値のズレの大きさはいくらになるのか,を求めることになります.最終的には「49.25」というズレ値が算出されました.

さて,この「49.25」というズレ値が許容範囲かどうかの判定をするのですが,ここで,χ2分布という確率分布を使うことになります.詳細は統計学教科書を参考してもらうとして,χ2分布を使うと,○○というズレ値が(ある条件では)どのぐらい珍しいことなのか,という「珍しさの確率」を教えてくれます.
かりに「有意水準1%=1%よりも小さい確率で発生することはすごく珍しいと考える(許容範囲と考えられない)」とすれば,「珍しさ確率」が1%以内であれば「許容範囲ではない」と判断します.

以上,長々と書きました.今までの説明を読めばわかるように,χ2検定とはある理論値を想定した時,実際の観測値がその理論値とほぼ一致しているかどうかを調べるための統計解析法のことです.

χ2検定では,理論値をどのように設定するかは分析者の自由です.その設定の仕方で,χ2検定は「適合度の検定」や「独立性の検定」など異なる名称が付与されますが,本質は同じなのです.

質問者さんの場合は

> 「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、

これを理論値としてうまく設定することが鍵となるでしょう.

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布...続きを読む

QT検定とMann-WhitneyのU検定の使い分け

ある2郡間の平均値において、統計的に有意な差があるかどうか検定したいです。ちなみに、対応のない2郡間での検定です。

T検定を行うには、ある程度のサンプル数(20以上程度?)があった方が良く、サンプル数が少ない場合には、Mann-WhitneyのU検定を行うのが良いと聞いたのですが、それは正しいのでしょうか?
また、それが正しい場合には実際にどの程度のサンプル数しかない時にはMann-WhitneyのU検定を行った方がよろしいのでしょうか?
例えば、サンプル数が10未満の場合はどうしたらよろしいのでしょうか?

また、T検定を使用するためには、正規分布に従っている必要があるとのことですが、毎回正規分布に従っているか検定する必要があるということでしょうか?その場合には、コルモゴルフ・スミノルフ検定というものでよろしいのでしょうか?

それから、ノンパラメトリックな方法として、Wilcoxonの符号化順位検定というものもあると思いますが、これも使う候補に入るのでしょうか。

統計についてかなり無知です、よろしくお願いします。

Aベストアンサー

結局ですね、適切な検定というのは適切なp値が得られるということなんですよ。適切なp値というのは第1種の過誤と第2種の過誤をなるべく低くするようにする方法を選ぶということなのですね。

従来どおりの教科書には「事前検定をし、正規性と等分散性を仮定できたら、、、」と書いていありますが、そもそも事前検定をする必要はないというのが例のページの話なのです。どちらが正しいかというと、どちらも正しいのです。だから、ある研究者はマンホイットニーのU検定を行うべきだというかもしれませんし、私のようにいかなる場合においてもウェルチの検定を行う方がよいという者もいるということです。

ややこしく感じるかもしれませんが、もっと参考書を色々と読んで分析をしていくうちにこういった内容もしっくり来るようになると思います。

Qサンプル数の異なる2群間におけるT検定について

サンプル数の異なる(50,15)2群間の身長の比較を行うのに、T検定をするよう指示を受けました。これは、長男と次男での出産時の身長に差があるかを調べるためですが、長男50人分と次男15人分(母親は異なる)のデータのため、サンプル数が違います。またT検定は私の理解では平均の比較(2群の場合)を行うものであるため、平均ではないこれらにどうしてT検定が良いのか、また統計ソフト(STATISTICAかエクセル)を使う場合にどのようにデータを入力すれば良いのかわかりません。
どなたかご存知の方がいらっしゃればアドバイスをいただけたらうれしいです。
よろしくお願いします。

Aベストアンサー

>平均ではないこれらにどうしてT検定が良いのか
 t検定は、2つの集団の平均値の差について検定する、すなわち、有意差があるかどうかを判定します。平均ではないように見えても、検定の計算式の中に、2群の平均値を用いています。
 ただ、前提時要件があって、2群が正規分布していることが必要です。サンプルを選んだときに、無作為抽出していたり、サンプル数が1000ほどあれば、正規分布を想定できます。

 検定法は、どの方法を選ぶかは、研究者の自由です。わたしがt検定を多用するのは、正規分布を想定でき、計算式が分かりやすく、サンプル数が2群で異なっても良い、その数も少なくて良い(大差があるので、1群3例でも有意差をだしています)、そして有意差が出やすいからです。

 この場合は、正規分布しているという条件を満たしているとはいえないだろうと判断します。その場合は、F検定をしてください。これは、2群の平均値ではなく、バラツキによって検定する方法です。正規分布している必要は無いとされています。
 F検定で有意差があれば、問題ありません。t検定では有、F検定ではなし、になると方針が定まりませんが(現在このデータで悩んでいます)。

>どのようにデータを入力すれば良いのか
 t検定を指示した人は、身近にいないのでしょうか。その人に訊くのが一番です。身近にいないのなら、いないと返答があれば、書き込みますが。 というのも、大学などの研究テーマだと、指導教員をさしおいて、はマズイノデ。もしも、このテーマに興味を持てば、私が実施して先に発表します。こんな研究内容がハッキリ分かる書き込みを4年生がやったら、研究室は追放ですね。
 長男、次男だけではなく、三男、四男となると多重比較という方法になります。この場合、H検定(エクセルだけでは無理でしょう)を使います。

>平均ではないこれらにどうしてT検定が良いのか
 t検定は、2つの集団の平均値の差について検定する、すなわち、有意差があるかどうかを判定します。平均ではないように見えても、検定の計算式の中に、2群の平均値を用いています。
 ただ、前提時要件があって、2群が正規分布していることが必要です。サンプルを選んだときに、無作為抽出していたり、サンプル数が1000ほどあれば、正規分布を想定できます。

 検定法は、どの方法を選ぶかは、研究者の自由です。わたしがt検定を多用するのは、正規分布を想...続きを読む


人気Q&Aランキング