
球表面の微小面積は球の半径をaとすればdS=2π(a^2)sinθdθと表されるようですが,なぜこのように表されるのかイメージがよくわかりません.
また教科書にはどこの角度をθとしているのかが書かれていないため困っています.
円環を足し合わせていくイメージですか?
またdS=2π(a^2)sinθdθを認めた場合に,これを球面全体について積分すれば球の表面積が得られるわけですよね?
S=∫dSとしたとき,積分範囲を0→πとすれば球の表面積が得られますが,なぜ0→πなんでしょうか?
結果としては0→πが正しいとわかりますが,私のイメージでは,これでは半球の表面積しか求められていないように思えます.
しかし球の表面積が求められているんですよね?
イメージがよくつかめないです….
回答をよろしくお願いします
No.1ベストアンサー
- 回答日時:
円環を足し合わせるイメージであっています。
θは天頂角でしょう。地球でいえば、北極が0、赤道がπ/2、南極がπです。この時、天頂角θの円環の幅はadθ、半径はasinθになります。したがって、円環の長さは2πasinθですので、面積dS=2πa^2sinθdθとなります。
θが天頂角であることがわかれば、積分範囲が0からπまででよいことはおわかりになると思います。
No.2
- 回答日時:
参考URLのような質問と回答がありました。
このような計算をするのが普通です。
このページのφにあたるのがあなたの質問のθにあたるようです。
定義域もπ/2ずれていますが、考え方はわかるのではないでしょうか。
参考URL:http://detail.chiebukuro.yahoo.co.jp/qa/question …
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 物理の問題です。 1 2022/12/20 23:04
- 数学 半径6の円Kを底面とする半球がある。半球の底面に平行な平面が半球と交わっており、交わりの円Lの半径は 6 2022/06/24 06:34
- 数学 ベクトル解析 ガウスの定理 問題 (1,0,0)、(0,1,0)、(0,0,1)、(0,0,0)を頂 7 2023/07/18 21:43
- 数学 どうやって材料を積み上げればよいか。 3 2023/05/15 22:18
- 数学 球面と接する直線の軌跡が表す領域 4 2023/07/30 12:37
- 地球科学 高3地学です。一通りといてみた問題ですが、授業で習った範囲外のため有識者の方、ご教示頂けると幸いです 2 2022/08/12 00:25
- 数学 x軸をまたぐ場合について考えてます。 それぞれ体積、表面積の立式は合ってますか? y=b±√(a 2 2023/05/21 17:05
- Visual Basic(VBA) VBAプログラム初心者です。 以下の問題のプログラムを表記してみたのですが、実行するためには、どこを 4 2023/01/19 20:04
- 数学 微分積分の円錐の体積についての問題がわからないです。 2 2022/07/16 16:26
- 数学 微分積分の図形についての問題がわからないです。 2 2022/07/14 14:05
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報