理解しがたい部分があります。解説お願いします。放物線y=x²上の異なる2点P(p, p²), Q(q, q²) における接線をそれぞれl₁l ₂とし、その交点をRとする。
l₁とl₂が直交するように2点P、Qが動くとき、 点Rの軌跡を求めよ。
↑以上問題ですが、軌跡としてy=-1/4が求められます。ここで、「逆に」の確認について、任意のxに対して実数p、q(p≠q)が存在すると言うことは理解できます。しかし、この確認でp、qを解とする二次方程式(-1/4=2tx-t^2)で判別式D>0をわざわざ示すのはなぜでしょうか?「逆に」のくだりは形式的なものではないのですか?
確認ですが、l₁とl₂が直交するように2点P、Qが動くならばRの軌跡はy=-1/4」これの逆を示すとき「Rの軌跡がy=-1/4ならば放物線y=x²上の異なる2点P(p, p²), Q(q, q²) における接線はそれぞれl₁l ₂として存在する」そして、実際pおよびq(≠)が存在するのであれば示せるということですよね。
異なる2点が実数かどうかが明示されていないから示すという話ですか?もし異なる2点pqについて実数であると表記されていた場合は逆の検証は必要ありませんか?
No.6
- 回答日時:
なお、任意のpについて
2x=p+q=p-1/(4p)
だから、「xも任意の実数範囲となる」としてよい。
(>_<)・・・・って、違った。
p≠0 だから、xは0を除いた任意の実数だった。m(__)m
No.5
- 回答日時:
とても、分かりにくい話ですが、命題の「逆」とか「確認」とかは無関
係と思う。
ぶっちゃけ、y=-1/4 は導けたが、xの範囲が決めないと、軌跡を問う
解答になっていない。だから
p+q=2x, (y=)pq=-1/4
の連立式が、任意のxについて、実数解p,qをもてば、xの範囲は任意の
実数と決定できる(つまり、軌跡は y=-1/4の直線)。
このことは、「tの2次式 t²-2xt-1/4=0 の解と係数の関係から、判別
式が正であればよい」を使っている(D=x²+1/4>0)。
No.2
- 回答日時:
A: 「放物線y=x²上の点P, Qにおける接線l₁, l₂が直交しさえすれば、
これらの接線の交点Rのy座標は-1/4だ」
ということと、
B:「点Rのy座標が-1/4でありさえすれば、
放物線y=x²上の点P, Qにおける接線l₁, l₂がRで交わって、
しかも直交するような、そういうP, Qが存在する」
ということとは別の話です。
Aが成り立っているというだけですと、Rが動く範囲は直線y=-1/4の全体に及ぶとは限らず、直線y=-1/4の一部分の範囲だけに限られているかもしれない。すなわち
C:「放物線y=x²上の点P, Qにおける接線l₁, l₂が直交していて、
それらはRで交わっている。
そして、Rのx座標がある値ZになるようなP, Qは存在しない」
ということもありうる。だから「逆に」のくだりは省略できないんです。
> 異なる2点が実数かどうかが明示されていないから
いいえ。y=x²を放物線(の方程式)と言っている。また「接線」の話をしている。ですから、実数に限定していることは明らかですね。
ご丁寧にありがとうございます(_ _;)
質問文長いのに一つ一つ答えていただいて助かりました。追加で質問させていただきたいのですが、実数は明らか(前提)としたうえで除外点を考慮しようってことですか?十分条件(十分条件でいいんですかね)がどの範囲において成り立つかという話ですか?理解が悪くてすみません。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学II 直線y=2x+kが放物線y=3x-x^2と異なる2点P,Qで交わるとする。 (1)定数kの 3 2024/05/23 02:04
- 数学 球面と接する直線の軌跡が表す領域 4 2023/07/30 12:37
- 数学 なぜx軸と平行な直線を検討しないのでしょうか 6 2024/02/18 20:17
- 数学 放物線と円の接点についてです。96(1)の、[1]で重解だと接することがよくわかりません。 xの2次 4 2022/12/24 17:59
- 高校 数Ⅱの軌跡という単元について質問です。 問題の最後に、逆に、この~上の全ての点は条件を満たすとかく場 3 2023/03/21 16:38
- 数学 写真の問題についてですが、わからないことが2つあります。 ①赤枠のところに逆関数と元の関数はy=xに 2 2023/09/07 16:09
- 数学 数学II 点(0,-2)との距離と、直線y=2との距離が等しい点の軌跡を求めよ。 という問題の解説で 4 2024/05/19 20:58
- 数学 微分について教えてください 放物線y=x^2のx=1における微分係数を定義に従って求め、その点におけ 5 2023/04/16 15:38
- 数学 数学オリンピックの問題 6 2024/01/06 12:11
- 数学 数学 軌跡の問題で2点から等しい距離にある点の軌跡を求めるので三平方の定理を使うのですが、求める点の 4 2023/02/10 21:26
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
一回も披露したことのない豆知識
あなたの「一回も披露したことのない豆知識」を教えてください。 「そうなんだね」と「確かに披露する場所ないね」で評価します。
-
土曜の昼、学校帰りの昼メシの思い出
週休2日が当たり前の今では懐かしい思い出ですが、昔は土曜日も午前中まで学校や会社がある「半ドン」で、いつもよりちょっと早く家に帰って食べる昼ご飯が、なんだかちょっと特別に感じたものです。
-
おすすめのモーニング・朝食メニューを教えて!
コメダ珈琲店のモーニング ロイヤルホストのモーニング 牛丼チェーン店の朝食などなど、おいしいモーニング・朝食メニューがたくさんありますよね。
-
好きな和訳タイトルを教えてください
洋書・洋画の素敵な和訳タイトルをたくさん知りたいです!【例】 『Wuthering Heights』→『嵐が丘』
-
以前にも質問させていただいたのですが、理解することができなかったので再度質問させていただきます。 写
数学
-
下の画像の中の三角形は正方形だ、と友達が言っていたのですが、その根拠のようなものはありますか? 二等
数学
-
隣り合う平方数の大きい数から小さい数を引いた差は必ず奇数の数列になるのですか? たまたま見つけたので
数学
-
-
4
数学の問題で 因数分解の問題で、なぜ(x+1)^2が次の{}の中に入った瞬間に2乗ではなくなるのです
数学
-
5
数学 算数の通分について 分数を約分するときって 例えば分母が 8と6だったら8×6をして48 だか
数学
-
6
数学の約束記号の問題について教えてください。
数学
-
7
円1:x²+y²=4と円2:(x-2)²+y²=1の交点を求めようと思って円1の方程式を変形してy²
数学
-
8
高校数学です。 m^2-11m-1が整数の平方となるような正の整数mを求めよという問題で、回答はこの
数学
-
9
おしえてgooに図形の問題を投稿したら、削除されました。なぜでしょう?
数学
-
10
小5 算数
数学
-
11
数学 不等式の表す領域
数学
-
12
111111を素因数分解すると 111111 = 111 × 1001 = 3×37×11×13×7
数学
-
13
1の100乗、2の100乗、~100の100乗をそれぞれ12で割った余りのうちことなるものは何通りか
数学
-
14
対数
数学
-
15
(b+c)/a=(c+a)/b=(a+b)/cのとき式の値を求めよ。 分母は0ではないからabc≠
数学
-
16
仕事をクビになり会社の門で憔悴していたらババアがいきなり話しかけてきました。 「この大きい袋に7で割
数学
-
17
整数問題です。
数学
-
18
小学生の時(40年前)に、18÷0は解無し、0÷18は0と教わりました。 しかし今は、どちちらの答え
数学
-
19
一辺が3センチの三角形の高さが 3√3/2になるのって何故ですか?
数学
-
20
この数学の問題解き方あってるか見てほしいです
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
曲線と点の最短距離の出し方
-
常にf’’(x)>0とf’'(x)=0...
-
Excelでこの直線と曲線が離れ出...
-
エクセル2007曲線の接線と傾き...
-
y=e^xに対して点(0、a)から...
-
y=x^3 の(0,0)における接線は
-
曲線y=xの3乗+3xの2乗-2につい...
-
傾きが同じ?
-
至急お願いします y=sinxの点...
-
円の接線はなぜ接点を通る半径...
-
数Ⅲで質問があります。 y=xe^-...
-
3次関数と、直線が変曲点で接す...
-
三次関数 点A(2、a)を通って、...
-
数学の問題です2問になります(1...
-
こういう問題のときあなただっ...
-
【数学】 接点が異なれば、接線...
-
サイクロイドの特異点
-
Oを原点とするxy平面上に直線 l...
-
エクセルのグラフ
-
x^3+y^3=1を陰関数を使って、点...
おすすめ情報
24時間経たないとBA選べないらしいのですが、一応締め切りという形にさせていただきます。お二方ありがとうございました!_(._.)_!
1日経過して選択できるようになってから
BAつけさせていただきます!!