ᅫ�^��ᅫ�\ᅫ�^ᅫ�f��^ᅫ�
の検索結果 (10,000件 21〜 40 件を表示)
yとf(x)の違いについて
…ずいぶん初歩的な質問ですみません。 y=…とおくのとf(x)=…とおくのとでどのような違いがあるのかよくわかりません。 2変数関数の時はf(x,y)=…とおかなければならないとは思うのです...…
関数f(x)がx=aで微分可能のとき、、、
…lim f(a+h)-f(a-h)/h の極限値をf(a),f'(a)であらわせ。 h→0 という問題なのですが、hを何かに置き換えるということは分かるのですが、何に置き換えればよいのか、よくわかりません。 どなた...…
UNITY Float型の接尾辞fって
…UNITYに限ったものではないのですが、Float型の接尾辞fについて Wikiやhttp://www.wisdomsoft.jp/40.html/を見てみたのですが ちょっと難しく理解できません。fってどのような時に使うのでしょうか? Ve...…
②の後、「よって、」の直後がわかりません。f(x)が、なぜ「インテグラル0→1のf(t)dt」になる
…②の後、「よって、」の直後がわかりません。f(x)が、なぜ「インテグラル0→1のf(t)dt」になるのでしょうか?…
関数f:ℝ→ℝは2階微分が存在するとします。xy平面の曲線y=f(x)上の任意の相異なる2点それぞれ
…関数f:ℝ→ℝは2階微分が存在するとします。xy平面の曲線y=f(x)上の任意の相異なる2点それぞれにおける法線の交点が領域y>f(x)に含まれるとき、f''は常に正であるといえるでしょうか?理由も...…
なぜ逆関数はf^(-1) (x)
…f(x)の逆関数はなぜ f^(-1) (x) という風にあらわしているのでしょうか・・・? 逆関数≠逆数 とは分かっていますが・・・ -1乗って 逆数みたいなイメージがあったので・・・ (xの-1...…
波動方程式について。 微分可能な関数f,gを用いて、f(z-vt)、g(z+vt)を写真の波動方程式
…波動方程式について。 微分可能な関数f,gを用いて、f(z-vt)、g(z+vt)を写真の波動方程式に代入して波動が進む速さvを求めたいのですが、どのように微分したらいいか教えてほしいです。…
f(x,y)=c(定数)のとき、dy/dxを求めよという問題です。最後の答えのところで、分母がfをy
…f(x,y)=c(定数)のとき、dy/dxを求めよという問題です。最後の答えのところで、分母がfをyで偏微分したものになってますが、定数関数をyで偏微分したら、0になりますよね?それでも分母にあっ...…
aを正の定数とし、f(x)=x²+2(a-3)x-a²+3a+5とする。 二次関数 y=f(x)のグ
…aを正の定数とし、f(x)=x²+2(a-3)x-a²+3a+5とする。 二次関数 y=f(x)のグラフの頂点のx座標をpとすると、p=ア-aである。 1≦x≦5における関数 y=f(x)の最小値がf(1)となるようなaの値の範囲は a≧イ で...…
(R+; ×) から (R; +) への f(x) = log(x) (R; +) から (R; ×
…(R+; ×) から (R; +) への f(x) = log(x) (R; +) から (R; ×) への f(x) = e^x これらが準同型写像か同型写像か答えよ この問題で準同型か同型かどうやって見分ければいいですか?…
仮面浪人という経歴は気持ちが良いものではないですか? 例えばfラン入学→fラン中退→aラン...
…仮面浪人という経歴は気持ちが良いものではないですか? 例えばfラン入学→fラン中退→aランク大学入学→ aランク大学卒業という経歴は印象が悪くなるのでしょうか?…
f(θ) = (2a・cosθ) / ( cos^2(θ)+a^2・sin^2(θ) ) について
…f(θ) = (2a・cosθ) / ( cos^2(θ)+a^2・sin^2(θ) ) のグラフの対称性を考えたい のですが (a>0 0≦θ≦2π) f(-θ)=f(θ) で (-θ+θ)/2 =0 よりθ=0でy軸対称になる ...…
「 f(z)=Σ_{n=-∞~∞}a(n)(z-a)^n(ローラン展開の式)より
…「 f(z)=Σ_{n=-∞~∞}a(n)(z-a)^n(ローラン展開の式)より、マクローリン展開はnが正の範囲でしか展開できないため、 n=0~∞として、またa=0(aは近似したい位置のx座標であり、このx座標が0の時、...…
x→∞ のとき, f(x) が収束するための必要十分条件が ∀e > 0, ∃R > 0 s.t.x
…x→∞ のとき, f(x) が収束するための必要十分条件が ∀e > 0, ∃R > 0 s.t.x,x'>R ⇒ |f(x) f(x')| …
三次関数y=f(x)では、f'(x)=0の判別式D>0となる時に極値を持つことと、 常に単調増加(減
…三次関数y=f(x)では、f'(x)=0の判別式D>0となる時に極値を持つことと、 常に単調増加(減少)している時には極値を持たない、ということが結びつきません。 どなたか教えてください。 微分積...…
f(z)=(z^2-1)のテイラー展開とマクローリン展開とローラン展開について質問があります。 質問
…f(z)=(z^2-1)のテイラー展開とマクローリン展開とローラン展開について質問があります。 質問1, f(z)=(z^2-1)のテイラー展開とマクローリン展開の導き方を詳しい過程の計算を用いて教えて頂...…
検索で見つからないときは質問してみよう!