ずばり昇華エネルギーって何ですか?
それぞれの元素に昇華エネルギーってのがあるようですが、どうやって測定してるのですか?
それと個々の元素の昇華エネルギーの値が載っているHPってあるのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (2件)

昇華エネルギーって求め方があるのかはわかりませんが


おそらくヘスの法則で経路に関わらず熱量は一定とか
いうやつからだしているんじゃないのでしょうか?
Na(s)→Na(g)とかいうやつは
イオン化エネルギーを求める際によくでてきますよね。
イオン化エネルギーは気体の原子がイオン化するのに
必要なエネルギーですからここから
Na(g)→Na+(g)+e-の式を作って出していったり
する問題がありました。

これも結局
Na(s)→Na(l)→Na(g)になるのに必要なエネルギーを
求めてヘスの法則からこれが
Na(s)→Na(g)に等しいとしたのでしょう。
いきなり固体から気体にするのには実際大変だと
思うのでこんな方法じゃないでしょうか?
    • good
    • 0
この回答へのお礼

ヘスの法則。初耳です。
求め方はそれらしい感じがします。
もうちょっとちゃんと勉強して、昇華エネルギーを求めてみたいと思います。
ありがとうございました。

お礼日時:2001/07/30 16:38

 昇華というのは、固体が液体を経ずに気体になる、あるいは、その逆のことですね。

固体が液体になる時も、液体が気体になる時も、エネルギーが必要ですね。固体が液体になる融解の場合、周囲から融解エネルギーを得なければ解けることができません。液体が気体になる時も同じですね。ですから、昇華する時もエネルギーが必要です。これが昇華エネルギーです。
 元素の昇華エネルギーについてですが、その前に、全ての元素(正確に言えば元素の単体)が、(大気圧下で)昇華するとは限りません。どちらかと言えば、昇華する元素の方が少ないです。有名なのはヨウ素でしょうか。私も他には、余り記憶に在りません。
 昇華エネルギーの値ですが、HPを探すより化学便覧の方が速いと思います。一覧表になっていますから。
    • good
    • 0
この回答へのお礼

すべての元素が昇華するわけではないのに、どうしてほとんどの元素に昇華エネルギーがあるのか疑問だったんです。
値は化学便覧の方が調べるのが早いですね。
ありがとうございました。

お礼日時:2001/07/30 16:35

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q粘度測定以外の分子量測定法(それぞれの理論と長所、短所)

分子量測定の実験で、
粘度測定(PMMAの粘度測定を行い、粘度平均分子量(Mv)を決定する。「試薬:トルエン、アセトン、ポリメタクリル酸メチル」)
という実験したんですけど、他の分子量測定法を二つ以上あるみたいなんです。
その2つ以上の分子量測定法を教えてくれませんか??
{1)それらの理論と、2)それぞれの長所、短所}
を中心にお願いしたいのですが・・・

また、どこかいいサイトがあったら教えてください。
よろしくお願いします。

Aベストアンサー

こんばんは

多少Web検索してみたのですが、
どうも光散乱法とサイズ排除クロマトグラフィー(SEC)の2つが主流のようですね。
参考URLの記事を引用すると(理論はさておき)、以下の通りです。

(1)光散乱法
 「SI単位にトレーサブルであり、低分子量から高分子量まで幅広く適応可能であるなどの長所をもっている。レーザー光源の出現により測定が幾分簡単になった。」
(2)サイズ排除クロマトグラフィー(SEC)
 「操作が簡単、分子量分布についての情報も得られるなどの理由で光散乱に比べ汎用されている。多くの場合絶対的な分子量を得ることができないのが最大の欠点である。」
 よく耳にするGPC(ゲル浸透クロマトグラフィー:Gel Permeation Chromatography)は、SECの一つとのことです。

参考URLでは、新しい測定方法として、マトリックス支援レーザー脱離・イオン化飛行時間型質量分析法(MALDI-TOFMS)法について、以下のように記載しています。
 「近年マトリックス支援レーザー脱離・イオン化飛行時間型質量分析法(MALDI-TOFMS)法が直接絶対分子量を測定できる方法として注目され、装置もかなり普及して来ているが、定量性に欠ける、事実上高分子量領域まで測定できないなど、精密な分子量計測法としての問題がある。」

その他にも以下の測定法がありました。(それぞれPMMAなどのポリマーの分子量測定に有効かどうかはわかりません)
・IAMS(イオン付着質量分析法)
 分子量1000程度までの高分子化合物
・電気泳動法
・浸透圧法(低分子用?)
・凝固点降下法(低分子用?)
・マススペクトル

ご希望のような理論、長所、短所をまとめたようなサイトは私には見つけられませんでしたので、光散乱法やSECなどを個別に調べ、まとめられたほうが良いかも知れませんね。

※参考URLは、”分子量測定”で検索してみてください。

#1さんが紹介されているサイトに良い回答が返ってくるといいですね。

参考URL:http://mandala.t.u-tokyo.ac.jp/~project/DB/reports/tatepj/keisoku/H13/H13kei1.pdf

こんばんは

多少Web検索してみたのですが、
どうも光散乱法とサイズ排除クロマトグラフィー(SEC)の2つが主流のようですね。
参考URLの記事を引用すると(理論はさておき)、以下の通りです。

(1)光散乱法
 「SI単位にトレーサブルであり、低分子量から高分子量まで幅広く適応可能であるなどの長所をもっている。レーザー光源の出現により測定が幾分簡単になった。」
(2)サイズ排除クロマトグラフィー(SEC)
 「操作が簡単、分子量分布についての情報も得られるなどの理由で光散乱に比べ汎用されて...続きを読む

Q12族の元素が典型元素なのはなぜですか?

1、2、13~18族の元素が典型元素なのはわかります。
3~11族の元素が遷移元素なのもわかります。
でも、どうして12族の元素が遷移ではなく典型元素なのか分かりません。

Aベストアンサー

過去には12族の元素を遷移元素として扱ったこともありました。
現在、典型元素として扱うということは、そう考えた方がメリットが大きいということから来ているのでしょう。
つまり、遷移元素というのは、電子の軌道のうちの内部にあるものに空の軌道があることによって、その特有の性質を出していると言えます。12族の元素には、その内部の軌道の空きがありません。そういう意味では遷移元素とは違っており、むしろ典型元素の特徴と一致します。まあ、そうは言っても電子を放出して陽イオンになる時には内部の軌道に空きができるわけですから、CdやHgのように『遷移元素的な』性質が出てくることもあります。

ちなみに、『電子の軌道のうちの内部にあるもの』の意味が取りにくいかもしれませんので補足します。高校ではM殻に最大で18電子収容されることを習うはずです。しかし、周期表の第3周期には8種の元素しかありません。残りの10個はどこに行ったかといえば、第4周期の遷移元素とZnのところに行ったということです。だから第4周期では遷移元素9個とZn1個の合計10個が多くなっています。そして、前に述べた『電子の軌道のうちの内部にあるもの』というのが、このM殻で第3周期までに満たされなかった軌道を意味しています。つまり、N殻に電子が2個入った後に、M殻に残りの電子が入り始め、その入り始めから、入り終わる前までの元素が遷移元素に相当するということです。

過去には12族の元素を遷移元素として扱ったこともありました。
現在、典型元素として扱うということは、そう考えた方がメリットが大きいということから来ているのでしょう。
つまり、遷移元素というのは、電子の軌道のうちの内部にあるものに空の軌道があることによって、その特有の性質を出していると言えます。12族の元素には、その内部の軌道の空きがありません。そういう意味では遷移元素とは違っており、むしろ典型元素の特徴と一致します。まあ、そうは言っても電子を放出して陽イオンになる時には内...続きを読む

Q解離エネルギー、結合エネルギー、イオン化エネルギー

解離エネルギー、結合エネルギー、イオン化エネルギーの違いとは何ですか?
また、金属のこれらの値が載っているサイトや本があれば教えてください!
お願いします

Aベストアンサー

結合エネルギーとイオン化エネルギーは全く違います。
結合エネルギーというと、たとえばH3C-CH3という分子(エタン)があったとして、このC-C結合が均等に解裂する場合に必要なエネルギーがC-C単結合の結合エネルギーです。
ようするに、共有結合が均等に切れて(ホモリシス)、二つのラジカルができるときに必要なエネルギーです。

一方、H3C-CH3のイオン化エネルギーというと、この分子から電子を一個飛ばしてエタンのラジカルカチオンを作るときに必要なエネルギーです。
H3C-CH3 -> [H3C-CH3]+ + e^- (ラジカルのドットが打てないorz)

解離エネルギーというともっと広い意味の用語ですね。
たとえば、CH3-IからCH3(メチル)とI(ヨウ素原子)に解離する場合の解離エネルギーといったら、これはC-I単結合の結合エネルギーになります。
また、このように均等解裂する場合ではなく、イオン的に解裂する場合でも、分子の中のある部分の解離エネルギー、と言うことはあるでしょう。

イオン化エネルギーでよければ、Wikipediaでそれぞれの金属を調べても載っていると思います。
結合エネルギーだと・・・?
金属の状態(価数とか、結晶なのか錯体なのかetc)でも変わるでしょうし。ちょっと分かりません。

結合エネルギーとイオン化エネルギーは全く違います。
結合エネルギーというと、たとえばH3C-CH3という分子(エタン)があったとして、このC-C結合が均等に解裂する場合に必要なエネルギーがC-C単結合の結合エネルギーです。
ようするに、共有結合が均等に切れて(ホモリシス)、二つのラジカルができるときに必要なエネルギーです。

一方、H3C-CH3のイオン化エネルギーというと、この分子から電子を一個飛ばしてエタンのラジカルカチオンを作るときに必要なエネルギーです。
H3C-CH3 -> [H3C-CH3]+ + e^- (...続きを読む

Q元素記号や元素名の覚え方

学校で元素名と元素記号を覚える宿題が出てて、私は元素記号=元素名(例えばAL=アルミニウム)って書いたのをノートに繰り返し書いたり、オレンジで書いたのを赤シートで隠して覚えたり、単語を覚えるのは朝がいいと聞いたので朝覚えたりしてるんですが、他に何かいい覚え方無いでしょうか?語呂合わせとか…。

元素名や元素記号だけじゃなく、法則や原子の構造や、その他色々あって、今はまだ元素名と元素記号を少しずつ覚えれてきたくらいなので、まだ沢山あると思うと気が遠くなりそうです…。(-_-;)

何かいい覚え方があれば教えてください!m(_ _)m

Aベストアンサー

 覚えようとするからそれが障害になって覚えられないのです。覚えようとする必要はありません。銅は何だっけと思えば参考書を見ます。するとCuと書いてありますか。そこでそうかと思えばいいのです。それを三回も繰り返せばイヤでも覚えちゃいますよ。私はそれでやって来て殆どの元素を覚えてますよ。これは元素記号だけではありません。すべてのことがそうです。大化の改新は何年だっけ? と思ったら歴史の本を見ます。すると645年と書いてあります。あ、そうかとそこで思えばいいのです。

 ウソだと思ったら今ここで試してごらんなさい。そして1時間後にもう一度試してみて下さい。覚えていなかったらもう一度参考書を見ます。三度目は覚えています!!(^_^)

Q内部遷移元素と外部遷移元素の違い

大学の講義で内部遷移元素と外部遷移元素の違いについてレポートを作るように言われたのですが、
検索ワードで調べてもわかりませんでした。
教えてください。

Aベストアンサー

電子配置に注目することです。
つまり、外部遷移元素では、原子番号の増加に伴って、どの軌道の電子が増加するかを見れば良いですし、内部遷移元素でも同様です。
・・・共通項としてのdとかfとかに注目するということです。


人気Q&Aランキング

おすすめ情報