No.8
- 回答日時:
点PがAでもなくBでもなくCでもなければ
単位ベクトルで、それが3つ集まって0になるという条件(☆)を
満たしているはずですよね。しかも、その点は必ず三角形の中にある。
(そうでなければ、短い2辺を結んだほうが短くなる。)
ということは三角形のどっかの角度が120度より開いちゃうと
そもそもそういう風なベクトルをとれなくなっちゃって
(図を書けば分かります)
結局、stomachmanさんのおっしゃるような頂点が点Pになってしまう
(三角形の中にはそんな条件を満たす点がないから)。
それにしても、方針もたっていて、問題設定もできれば、
ほとんど解けたようなものだと思うのですが・・・
最近はいろいろDVD化されていて、見るのも大変でしょう。
2変数関数(どういう曲面なのかなあ)の問題というのは
陰関数として表せれればいいということですよね。
一番簡単なのは(☆)を変形すれば良いのではないでしょうか?
ありがとうございます。よくわかりました。あとは自分でもできるとおもいます。
予定どおり、8月2日午後11時59分にこれを閉じます。
皆さんどうもありがとうございました。
No.7
- 回答日時:
newytypeさんが最初に書かれていたように
ベクトル解析を使えばいいんじゃないでしょうか?
p=(px,py), a=(ax,ay)でベクトルp-aの長さ|p-a|のpについての勾配は
http://oshiete1.goo.ne.jp/kotaeru.php3?q=111144
にあるように、(p-a)/|p-a|ですよね。
これは単位ベクトルで、それが3つ集まって0になるというと・・・
そうすると120度を越えちゃうとこのままじゃだめ
というのもわかりますよね?
距離の2乗の和であれば、重心として簡単に求まるんでしょうが、
解析的に座標を与えることってできるのでしょうか?
それにしても、響子さんとは。
六行目;120度です。
7、8行目; 何が駄目なんですか?
10、11行目;点A(-a,0),点B(a,0),点C(b.c),
点P(x,y)として、距離を求め、Z=f(x,y)
の2変数関数(どういう曲面なのかなあ)の問題としました。
さて、どうでしょう。
13行目;あなただけです。私のおふざけに付き合ってくれる人は。
どうもありがとう。
No.6
- 回答日時:
消されていたのですね。
シャボン膜については、以前、「秋山仁」さんがTVで実演されていました。みどとに120度になっていました。
針金(石鹸になじむように糸を巻いてある)でつくった三角柱を石鹸液にしずめて持ち上げると、表面張力によって膜の面積が最小になろうとします。最初の瞬間には、三角柱の5面に膜ができます(実際にはできていない)が、それよりも、内側にへこんだ形のほうが面積が小さいので上下の底面、3つの側面がそれぞれへこんだ、(それぞれの辺から三角形と台形が内側にのびる)形になります。
(三角柱に高さがないと、上下の三角形がくっついちゃうから、側面からの膜どうしがくっつかない)
側面からの膜同士は120度になってました。(目測ですが)
計算は、根性出してやれば高校1年レベルでもできるんじゃないですか?(座標を作って、ピタゴラスの定理使って・・)
No.5
- 回答日時:
石鹸水が作る膜って制限の中で面積を最小限にする形になるんですよね。
円筒の骨組みだけにして石鹸水から持ち上げると懸垂線の回転体になったり。
でくっついちゃうとパーンってはじけちゃうんですけど。水の科学館でやりました。
で、言いたいのは、同じように三角柱を石鹸水から持ち上げると、三角柱に高さが十分あれば
上と下で立体角πの部分が出来てその間は台形が3枚、短辺を共有している。
それを上から見ると三角形の各点から内部の点へ直線を引いた形になっていて
その3本の直線のなす角はそれぞれ2/3π。
上から見ると言う事は3次元を2次元に落としているので面積は長さに置換えられ、
三角形の各頂点から内部の点へ3本の直線を引いた時、その長さの和が最小になるのは
その3本の直線のなす角がそれぞれ2/3πとなると言えます。
数学的証明にはなっていませんが、感覚的に捉えるには良い例だと思いますが。
卿の意見には聞くべき点があるやもしれん。
だが私にはいささか感覚的すぎてよくわからない。
私にもわかるように具体例をあげて説明してほしい。
とくに5行目から9行目までのところをである。
本当にそうなるのか教えてほしいッッピー。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・あなたの人生で一番ピンチに陥った瞬間は?
- ・初めて見た映画を教えてください!
- ・今の日本に期待することはなんですか?
- ・【大喜利】【投稿~1/31】『寿司』がテーマの本のタイトル
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・【お題】大変な警告
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
図形の性質 「平行な二直線を含...
-
三角形折りの卓上札に両面印刷...
-
三角錐と四面体
-
四角形の重心の求め方の定義名
-
この問題が考えても、理解でき...
-
エクセルで文書の改訂記号を作...
-
垂心はなぜHで表すのか?
-
算数の得意な方お願いします
-
数学Aについて質問です。 1. 正...
-
物理の問題でなぜθが同じ角度か...
-
3次元上の三角形内の任意点の...
-
数学の問題です。 △ABCにおいて...
-
Wordで三角柱を作成したいので...
-
合同と=の違い
-
台形の対角線の求め方
-
ベクトルの重心
-
ヘロンの公式って、3辺が整数で...
-
座標求積法による面積計算
-
三角柱の表記に関する質問
-
手の甲の三つの点のような刺青
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学Aについて質問です。 1. 正...
-
正八角形で・・・・
-
合同と=の違い
-
ヘロンの公式って、3辺が整数で...
-
エクセルで文書の改訂記号を作...
-
三角錐と四面体
-
三角形折りの卓上札に両面印刷...
-
垂心はなぜHで表すのか?
-
この問題が考えても、理解でき...
-
Wordで三角柱を作成したいので...
-
高校教科書の問題
-
直方体の切り口が直角三角形に...
-
三角柱と三角錐
-
スマホでこの画像の4G左側にあ...
-
120度での三平方の定理について...
-
ベクトルの重心
-
点と三角形の距離
-
三角形ABCにおいてa=2√3、b=3-√...
-
正八角形についてです。 3個の...
-
【図形の性質】この問題の解き...
おすすめ情報