
A 回答 (3件)
- 最新から表示
- 回答順に表示
No.3
- 回答日時:
問題の式を 展開して a で整理しただけです。
x³+(a-1)x²+(a-3)x-2a+3=0
x³+ax²-x²+ax-3x-2a+3=0
ax²+ax-2a+x³-x²-3x+3=0
(x²+x-2)a+x³-x²-3x+3=0
未知数が 複数ある時は、次数の低いもので
整理するのが 常套手段です。
No.2
- 回答日時:
場合分けでゴチャゴチャしない簡潔な解法としては、
f(x) = 0 の重根は f(x) = f’(x) = 0 の解である
ことを使う方法があります。
f(x) と f’(x) の多項式としての最大公約数は x の1次式
になりますから、簡単に解くことができ、
重根があるとすれば x = (aの入った式) である
という a の式が求まります。
これを f’(x) = 0 へ代入すれば、
f(x) = 0 が重根を持つための a の条件が
a の方程式として得られます。
No.1
- 回答日時:
青線の式は、問題の3次方程式の左辺 x^3 + (a-1)x^2 + (a-3)x -2a + 3 を
a の1次式として整理したものです。
x^3 + (a-1)x^2 + (a-3)x -2a + 3 を因数分解しようとしてやってみたのでしょう。
変数を複数持つ多項式を因数分解するときの基本は、
まず、次数の低い変数の多項式として整理し
その各次の係数から共通因数を見つけることです。
今回の多項式は a については1次式で、
1次の係数が x^2 + x - 2 = (x+2)(x-1),
a についての定数項が x^3 - x^2 - 3x + 3 = (x-1)(x^2 + ax + 2a -3) です。
ここから共通因数 (x-1) を見つけて
x^3 + (a-1)x^2 + (a-3)x -2a + 3 = (x-1){ (x+2)a + (x^2 + ax + 2a -3) }
と因数分解できます。
こうして、3次方程式のひとつの解 x = 1 が発見できました。
写真の解答は、それ以降、x = 1 が解であることを利用して場合分けを行っています。
x^3 + (a-1)x^2 + (a-3)x -2a + 3 = 0 の式を睨んだだけで、直感で
x = 1 が解であることを発見できる人には、上記の手間は必要ありません。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 高一数学 整数 画像あり 〔 授業プリント No. 1 〕 青マーカーのような書き方はだめなのではな 1 2023/10/02 21:16
- 数学 高一数学 整数の性質 画像あり 〔 授業プリント No.4 〕 (1)です。 解説では、最大公約数が 1 2023/09/24 09:13
- 数学 高一数学三角比 〔 授業プリント No. 4 〕 ①なぜ2cos²が2(1-sin²)になるのか ② 5 2023/11/08 08:08
- 数学 高一数学 整数 画像あり 〔 授業プリント No.3 〕 これは、k+1=7mとおいても、l=7mと 2 2023/10/01 15:25
- 数学 高一数学三角比 〔 授業プリント No.7 〕 (2)です。答えは √R:√r:√R+r です。 解 2 2023/12/04 15:07
- 数学 高一数学 〔 授業プリント No.4 〕 (2)です。 例えば、cos110 ならcos(90+20 7 2023/12/07 10:08
- 数学 高一数学 整数 〔 授業プリント No.7 〕 「nを自然数とするとき、n²+5n+12とn+2の最 3 2023/10/10 22:08
- 数学 高一数学 整数問題 画像あり プリントNo.5 緑マーカーの部分です。 なぜ 5k、5k+1、5k+ 4 2023/09/17 14:02
- 数学 高一数学整数 画像あり 〔 授業プリント No.9 〕 解説では、ルートの中がゼロ以上にならなくては 5 2023/10/09 15:04
- 数学 高一数学 式と証明 〔 チャート 5ページ 7番 〕 再び申し訳ございません(>_<。) 青いマーカ 4 2023/12/31 11:12
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
多項式について質問です。 エク...
-
余次元って何?
-
M系列の生成多項式と原始多項式...
-
等差×等比 型の数列の和を求め...
-
単項式と分数式の違いについて
-
約数と因数の違い(∈N)
-
なぜ、2変数以上の多項式を因数...
-
例1を組立除法でどうやってkを...
-
データのノイズ除去法 - Savitz...
-
斉次とは?(漢字と意味)
-
剰余の定理と因数分解(あまり...
-
(x+y+2z)(2x+3y-z)(4x-y-3z)を...
-
(x-1)(x-2)(x-3)の展開の...
-
パデ近似の利点について教えて...
-
数学に関する質問です。
-
【降べきの順/2つの文字に着目...
-
原始多項式の求め方
-
問題が理解できません
-
整式は有限次数のみ?
-
多項式の定義について
おすすめ情報