No.5ベストアンサー
- 回答日時:
つまり、1変数2次方程式の解は2個、1変数3次方程式の解は3個、・・・・・ですから、sinxがxのn次多項式ならsinx=0はxのn次方程式になり、解はn個以下のはず。
でもy=sinxは周期関数で、x=0以下無限個の解を持つから多項式ではありえない、という意味です。数3だったら微分する手もあります。sinxを4回微分すすとsinxに戻りますが、多項式なら次数が下がっていくために多項式x=0以外はこういうことはおきません。
No.6
- 回答日時:
こういうのは,どうですか
sin(x)がn次の多項式P(x)と書けたとする.
sin(x)=P(x)
この両辺をn+1回微分すると・・・
以降はご自身でお考え下さい.
No.4
- 回答日時:
30数年前に名古屋大学の入試問題に出題された。
分かっている人には、こんな簡単な問題がということに
なろう。
しかし、高校生が三角関数をどう捉えているかを知る
良問とも言える。
n次方程式はn個の解を持つ、というのは大学生なら
当たり前だが、高校では習わないかも知れない。
しかしたいていの人が知っている。
他には、x→∞の極限を考えるというのはどうだろう。
周期性を述べるのも面白いかもしれない。
テーラー展開すれば多項式近似ができるのに、
やっぱりどこまでいっても多項式ではない、
というところが不思議といえば不思議。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
deg f?
-
等差×等比 型の数列の和を求め...
-
斉次とは?(漢字と意味)
-
最小多項式
-
( )でうしろのほう...
-
これがどうしても分かりません❗...
-
(x-1)(x-2)(x-3)の展開の...
-
冪級数展開 マクローリン展開 ...
-
微積分
-
ランダウの記号 について質問で...
-
Qバー={α⊂C| αがQ上代数的...
-
M系列の生成多項式と原始多項式...
-
わからない数学記号と用語
-
原始多項式の求め方
-
複雑な式の因数分解の解き方が...
-
数学 因数分解 X^3+x^2+x−1 ...
-
ド忘れしたんですけど、2分の1...
-
3のn-1乗はどうやって解けばよ...
-
2.5みたいな数字を分数になおす...
-
指数対数
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
(x-1)(x-2)(x-3)の展開の...
-
単項式と分数式の違いについて
-
多項式について質問です。 エク...
-
(x+3)(x-3)(x^4+9x^2+81)の展開...
-
余次元って何?
-
データのノイズ除去法 - Savitz...
-
等差×等比 型の数列の和を求め...
-
斉次とは?(漢字と意味)
-
数学 因数分解 X^3+x^2+x−1 ...
-
なぜ、2変数以上の多項式を因数...
-
単項式とは
-
M系列の生成多項式と原始多項式...
-
三角関数系が直交性を持つとい...
-
素イデアルの判定がわからないです
-
約数と因数の違い(∈N)
-
高3の微分についての質問です。...
-
降べきの順について分からない...
-
これがどうしても分かりません❗...
-
因数分解の問題です。教えてく...
-
最小公倍数と最大公約数の問題...
おすすめ情報