
No.5ベストアンサー
- 回答日時:
No.1 補足。
1 + 0i, 2+0i を 3:1 で内分する点と外分する点が
円の中心を通る直線(実軸)と円との交点になります。
内分点は (1×(1+0i) + 2×(3+0i))/4 = 7/4 + 0i
外分点は (-1×(1+0i) + 2×(3+0i))/2 = 5/2 + 0i
円の中心はこの中点なので
((7/4+0i) + (5/2+0i))/2 = 17/8 + 0i
半径は (5/2 - 7/4)/2 = 3/8
この補足部分は「図形的」だと思うけど
1 + 0i, 2+0i を図形的に導くのはまだちょっと
思いつかない。なんかありそうだけど・・・
No.4
- 回答日時:
計算じゃなくて、図形的にってことですよね?
ω = (6z - 1)/(3z - 1)
= 2 + 1/(3z - 1).
この式をたどって、図形を変形していきます。
z が原点を中心とする半径1の円を描くことから、
3z - 1 は -1 を中心とする半径 3 の円を描き、
1/(3z - 1) はそれを単位円で反転したものになる。
2 + 1/(3z - 1) は、それを更に実軸方向へ 2 平行移動した図形を描く。
円を単位円で反転する作図がちょっと難しいかな。
その点、|ω-1|:|ω-2| = 3:1 に帰着する No.1 の説明はスマートだな。
No.3
- 回答日時:
No.2さんと基本的には同じです。
ω-2=1/(3z-1)からW=ω-2とおいて
W(3z-1)=1 3zW=1+W
いま、共役複素数を * で表わすことにすると、
3z*W*=1+W*これを上の式と辺々かけるとzz*=1に注意して
9WW*=1+W+W*+WW*
8WW*-W-W=1
WW*-(1/8)W-(1/8)W*=1/8
これの両辺に(1/8)²をたすと
|W-1/8|²=(3/8)²
|W-1/8|=3/8、ここでW=ω-2とωにもどせば
|ω-17/8|=3/8 です。
No.1
- 回答日時:
式をZについてとくと
Z=(ω-1)/{3(ω-2)}
|Z|=|(ω-1)|/|{3(ω-2)}|=1
つまり点(1、0)、点(2、0)からの距離が3:1の点の集合がωの軌跡になります。
2点からの距離の比が一定の点の集まりは円になり、2点を通る直線が円を2等分することを知っていれば後は簡単ですよね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報