整式f(x)が等式x^2f'(x) - f(x) = x^3 + ax^2 + bx
を満たしている時、a+bの値を求めよ
こちらの問題について質問させて下さい。
解答の方針としては次数を求めて恒等式で考えます。
その次数を求める際の考え方について質問させてください。
f(x) = kとおくと
-k = x^3 + ax^2 + bx より
恒等式ではない
f(x)をn次とすると
左辺
x^2 →2次
f'(x) →n-1次
→ x^2f'(x)はn+1次
f(x) → n次
よりn+1=3
n=2次
Q1: x^2f'(x)はn+1次になるのは何故か?
2次×n-1次= n+1次になる理由を教えて下さい。
Q2: n+1次 - n次 = n+1次になるのは何故か?
よろしくお願いします。
No.1ベストアンサー
- 回答日時:
f(x) = Σ[k=0,n] (a_k)x^k と書いてしまえばいい。
f(x) が n 次だという仮定から、 a_n ≠ 0.
Q1.
(x^2)f(x) = Σ[k=0,n] (a_k)x^(k+2) となるから、
最高次の項は n+2 次。
Q2.
(x^2)f(x) - f(x) = Σ[k=0,n] (a_k)x^(k+2) - Σ[k=0,n] (a_k)x^k となるから、
最高次の項は引き算で相殺されることはなく、 n+2 次。
質問文中の答案で、f(x) を n 次と置く前に
f(x) = 定数 を別に考えているのは偉い。
これがちゃんとできる人は、以外に少ない。
No.2
- 回答日時:
A1
f(x)=αxⁿ+βxⁿ⁻¹+γxⁿ⁻²…とおくと
これは最高次の項がαxⁿなので、n次式
f′(x)=αnxⁿ⁻¹+β(n−1)xⁿ⁻²+γ(n−2)xⁿ⁻³…
xのn−4乗以下の項は、ご質問の最高次の次数には到底及ばず、書かなくても影響はないので
簡単化するために
f′(x)=αnxⁿ⁻¹+βxⁿ⁻²+γxⁿ⁻³
とすると
x²f′(x)の展開式は
x²f′(x)=x²(αnxⁿ⁻¹+βxⁿ⁻²+γxⁿ⁻³)
=αnxⁿ⁺¹+βxⁿ+γxⁿ⁻¹
このことから、x^2f'(x)はn+1次だとわかります
A2
g(x)=Axⁿ⁺¹+Bxⁿ+Cxⁿ⁻¹+Dxⁿ⁻²…とおくと、これはn+1次式
n+1次式−n次式
=g(x)−f(x)
=(Axⁿ⁺¹+Bxⁿ+Cxⁿ⁻¹+Dxⁿ⁻²…)
−(αxⁿ+βxⁿ⁻¹+γxⁿ⁻²…)
=Axⁿ⁺¹+(B−α)xⁿ+(C−β)xⁿ⁻¹+(D−γ)xⁿ⁻²…
=n+1次式
となります
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学の問題が分かりません! 次の関数y=f(x)の逆関数y=f^-1(x)を求めよ. ※答えが2次関 3 2023/06/22 19:22
- 数学 高校数学で質問があります。 2 2023/02/13 16:40
- 数学 4次関数と二重接線に囲まれる面積を求めるときに、まず4次関数と1次関数の交点を求めたいのですが ax 2 2022/10/16 12:42
- 数学 数学を教えていただきたいです 3 2024/03/11 21:16
- 数学 2次不等式 ax^2 - bx - a^2 + 8 >0 の解が - 1/3 <x<2 のとき,定数 6 2023/12/24 18:15
- 数学 二次関数の解の配置問題で納得できないものがあります 6 2023/09/28 11:55
- 大学受験 ある大学の数1,Aの過去問なのですが回答に解説がなく困っています。誰か解説をつけて欲しいです(><) 1 2022/11/05 12:57
- 数学 【 数学 一次関数 】 問題 f(1)=-7,f(3)=-13を満たす1次関数f(x)を求めよ。 疑 4 2022/10/23 17:50
- 数学 数学II 二次方程式の因数分解 ax^2+bx+c=a(x-α)(x-β) 2数α、βに対してp=α 5 2024/03/01 15:07
- 数学 高校数学で質問があります。 2 2023/02/13 15:49
このQ&Aを見た人はこんなQ&Aも見ています
-
餃子を食べるとき、何をつけますか?
みんな大好き餃子。 ふと素朴な疑問ですが、餃子には何をつけて食べますか? 王道は醤油とお酢でしょうか。
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
忘れられない激○○料理
これまでに食べたもののなかで、もっとも「激○○」だった料理を教えて下さい。 激辛、でも激甘でも。 激ウマ、でも激マズでも。
-
おすすめのモーニング・朝食メニューを教えて!
コメダ珈琲店のモーニング ロイヤルホストのモーニング 牛丼チェーン店の朝食などなど、おいしいモーニング・朝食メニューがたくさんありますよね。
-
お風呂の温度、何℃にしてますか?
みなさん、家のお風呂って何℃で入ってますか? ぬるめのお湯にゆったり…という方もいれば、熱いのが好き!という方もいるかと思います。 我が家は平均的(?)な42℃設定なのですが、みなさんのご家庭では何℃に設定していますか?
-
f(x)=f(x²)はどんなグラフになりますか?
数学
-
三角関数
数学
-
√1って|1|もしくは±1ですよね?
数学
-
-
4
なぜ分子が1になるんですかこれ?あと、なぜ答えが0なんですか? 数学数学
数学
-
5
和の公式
数学
-
6
高校数学についてです。 積分の入力のやり方がわからないので日本語で書きますが、インテグラル0からπの
数学
-
7
写真の問題の解説にある「a≦bとしても一般性を失わない」というのは「aとbを入れ替えても全く同じ式で
数学
-
8
△ABCで変の長さを求める問題を教えてください。 ⑴ b=8、C=5、A=60°のときaの値 ⑵ a
数学
-
9
lim(x→0)sin2x/x=2でいいですよね?
数学
-
10
1²+1²=は何ですか?
数学
-
11
0 < a < 1のとき、log(a)bとlog(b)aの大小を比較せよ。 こちらの問題のbの取る値
数学
-
12
簡単なはずですが教えてください。
数学
-
13
少数を分数に直す時に素早くできる方法ありませんか? 例えば4.2を21/5のように素早く計算したいで
数学
-
14
三角関数の変換で納得いかないところがあります
数学
-
15
1/2√(6^2+8^2)が10/2になるのはどのような計算ですか?
数学
-
16
2024.4.22 09:12にした質問の2024.4.22 13:10に頂いた以下の解答について質
数学
-
17
0≦x≦1において 赤く囲んだ不等式を証明する問題ですが、この解き方は合ってますか?
数学
-
18
2の810乗はいくつですか?
数学
-
19
1の100乗、2の100乗、~100の100乗をそれぞれ12で割った余りのうちことなるものは何通りか
数学
-
20
高校数学についてで、帰納法をたとえば数列で使うときにn=kとおいて、kで示したいものが成り立つと仮定
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
中高で数学をやる意義は? と聞...
-
答えは分かるのですが解き方が...
-
数学検定準一級を取得している...
-
ウエオのところがわからないで...
-
f(x)=sin3x (0,π/6]のフーリエ...
-
数3の質問です。 極限値を求め...
-
Σk=1からnまでの(19/20)k-1乗...
-
数3の質問です。 この①のa、bを...
-
中学数学の問題です。 2≦T<1/4...
-
関数 f(x)=sin(3x) (0<x=<π/6)...
-
ここでいうスカラーとはなにを...
-
中1数学の問題が分かりません
-
サイコロの確率の問題です! サ...
-
高校の微分の問題で、g(x)=x^3-...
-
a,bは0でない整数。a²/b³➡a/bを...
-
以下の原稿(プレプリント)の...
-
f(x)=f(x²)はどんなグラフにな...
-
数学で用いるファイバーには画...
-
1²+1²=は何ですか?
-
√1って|1|もしくは±1ですよね?
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
2024.8.20 18:17にした質問の、...
-
こちらの2024.08.20 18:17と202...
-
2024.10.13 05:04にした質問の2...
-
2024.5.8 08:24の質問の 2024.5...
-
こちらの2024.08.20 18:17と202...
-
積分について
-
2024.10.8 12:12に質問した 202...
-
2024.5.8 08:24にした質問の 20...
-
この問題のときかたをおしえて...
-
2+A=10 3+B=12 A+B=19 これで正...
-
109x-29y=1 の整数解の見つけ方...
-
時計の長針と短針が重なる回数...
-
x>0,y>0→x^x+y^y≧x^y+y^x?
-
2024.8.20 18:17にした質問の20...
-
10のn乗-1でn=1から15,はなぜ17...
-
ミラーか線か
-
複素数平面
-
共テ模試で「切片」と書かれて...
-
数Ⅲの問題が分かりません
-
方程式 九州大学過去問
おすすめ情報