どなたか、3次元の極座標のラプラシアンの式をステップバイステップで教えてください。

A 回答 (1件)

極座標については何回か質問されています。



あなたの回答には下の参考URLのstarflora様の参考URLが参考になると思います。

参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=190707
    • good
    • 0
この回答へのお礼

大変参考になりました。有難うございました。

お礼日時:2002/01/22 19:58

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q極座標表示

模範解答と計算が合わないのです・・・。
比較してみて下さい。

3次元ポテンシャルと極座標表示の分野で、
シュレーディンガー方程式に使う為の変換です。

△(x、y、z)=(∂^2/∂x^2)+(∂^2/∂y^2)+(∂^2/∂z^2)
という式を
x=rsinθcosψ、y=rsinθsinψ、z=rcosθ
の変数変換をする。
∂/∂x=(∂r/∂x)(∂/∂r)+(∂θ/∂x)(∂/∂θ)+(∂ψ/∂x)(∂/∂ψ)
∂/∂y=(∂r/∂y)(∂/∂r)+(∂θ/∂y)(∂/∂θ)+(∂ψ/∂y)(∂/∂ψ)
∂/∂z=(∂r/∂z)(∂/∂r)+(∂θ/∂z)(∂/∂θ)+(∂ψ/∂z)(∂/∂ψ)
と表され、
r=√(x^2+y^2+z^2)、tanθ={√(x^2+y^2)}/z、tanψ=y/x
の関係から各係数を計算して
(∂r/∂x)=x/r=sinθcosψ、(∂r/∂y)=y/r=sinθsinψ、(∂r/∂z)=z/r=cosθ
(∂θ/∂x)=cosθcosψ/r、(∂θ/∂y)=cosθsinψ/r、(∂θ/∂z)=-sinθ/r
(∂ψ/∂x)=-sinψ/rsinθ、(∂ψ/∂y)=cosψ/rsinθ、(∂ψ/∂z)=0
となるので、これをずーっと計算すると
△(r、θ、ψ)=(∂^2/∂x^2)+(∂^2/∂y^2)+(∂^2/∂z^2)
      =(1/r^2)(∂/∂r)(r^2・∂/∂r)
      +(1/r^2sinθ)(∂/∂θ)(sinθ∂/∂θ)
      +(1/r^2sin^2θ)(∂^2/∂ψ^2)       ―――(1)

となるそうなのですが、
私がちまちま計算しましたところ、

△(r、θ、ψ)=(∂^2/∂r^2)+(1/r^2)(∂^2/∂θ^2)+(1/r^2sin^2θ)(∂^2/∂ψ^2)

という形になりました。
同じようで、微妙に違うのですが
これはどういうことなのでしょうか?
そのまま(1)式に拡張して良いのか、
計算が途中で間違えたのか、如何でしょう。

模範解答と計算が合わないのです・・・。
比較してみて下さい。

3次元ポテンシャルと極座標表示の分野で、
シュレーディンガー方程式に使う為の変換です。

△(x、y、z)=(∂^2/∂x^2)+(∂^2/∂y^2)+(∂^2/∂z^2)
という式を
x=rsinθcosψ、y=rsinθsinψ、z=rcosθ
の変数変換をする。
∂/∂x=(∂r/∂x)(∂/∂r)+(∂θ/∂x)(∂/∂θ)+(∂ψ/∂x)(∂/∂ψ)
∂/∂y=(∂r/∂y)(∂/∂r)+(∂θ/∂y)(∂/∂θ)+(∂ψ/∂y)(∂/∂ψ)
∂/∂z=(∂r/∂z)(∂/∂r)+(∂θ/∂z)(∂/∂θ)+(∂ψ/∂z)(∂/∂ψ)
と表され、
r=√(x^2+...続きを読む

Aベストアンサー

 
  それはラプラシアンの極座標表示ですが、以下のURLに、式の導出計算の過程を一応一通り書いてありますが、結論は、提示されている公式の通りです。わたしは、そんな計算をすることは長らくしていないし、時間がかかるのも明らかなので、以下の参考ページを見て、どこで計算を間違えたのか、自分の計算ノートと比較して考えてみてください。
  
  こういう膨大な計算の場合、よく間違いを犯します。(そんなに膨大でないのかも知れません。微分方程式の解で、もっと長々した計算が必要なものが一杯あったはずです(教科書では、この式を展開するとこうなる、と書いてあって、実際に検算してみると、2時間とか3時間とか、かかるとか)。
 

参考URL:http://chiron.mtk.nao.ac.jp/~daisuke/ja/Research/Astronomy/Math/Laplacian/

Qラプラシアンの極座標表示について

化学系の学部にいるので数学は不得意なのですが,誰か教えて下さい。
ラプラシアンを2次元直交座標から2次元極座標に変換する場合
直交座標(x,y),極座標(r,θ)とすると,
x=rcosθ,y=rsinθ・・・(1)からδ/δx,δ/δyを求める時,参考書によると
r^2=x^2+y^2,tanθ=y/x・・・(2)
δ/δx=(δ/δr)(δr/δx)+(δ/δθ)(δθ/δx)
δ/δy=(δ/δr)(δr/δy)+(δ/δθ)(δθ/δy)・・・(3)
(2)をxで微分すると
2r(δr/δx)=2x=2rsinθ
(1/(cosθ)^2)(δθ/δx)=-(y/x^2)=-(sinθ/r(cosθ)^2)
より
δr/δx=cosθ,δθ/δx=-(1/r)sinθ
同様に
δr/δy=sinθ,δθ/δy=(1/r)cosθ
以上の関係を(3)に入れれば,
δ/δx=cosθ(δ/δr)-(1/r)sinθ(δ/δθ)
δ/δy=sinθ(δ/δr)+(1/r)cosθ(δ/δθ)となります。
これで,合っていいるのですが,初めて,私がこの問題を考えた時,
(1)をそれぞれ,rとθで偏微分しました。
δr/δx=1/cosθ,δθ/δx=-(1/rsinθ)
δr/δy=1/sinθ,δθ/δx=(1/rcosθ)となりsinθ,cosθの項が
正解と逆転してしまい,異なる結果となってしまいました。
私は,どちらの方法でも同じになると思っていたのですが,
どうして,違うのですか誰か分かりやすく教えて下さい。

化学系の学部にいるので数学は不得意なのですが,誰か教えて下さい。
ラプラシアンを2次元直交座標から2次元極座標に変換する場合
直交座標(x,y),極座標(r,θ)とすると,
x=rcosθ,y=rsinθ・・・(1)からδ/δx,δ/δyを求める時,参考書によると
r^2=x^2+y^2,tanθ=y/x・・・(2)
δ/δx=(δ/δr)(δr/δx)+(δ/δθ)(δθ/δx)
δ/δy=(δ/δr)(δr/δy)+(δ/δθ)(δθ/δy)・・・(3)
(2)をxで微分すると
2r(δr/δx)=2x=2rsinθ
(1/(cosθ)^2)(δθ/δx)=-(y/x^2)=-(sinθ/r(cosθ)^2)
より
δr/δx=cosθ,δθ/δx=-(1/r)sinθ
同様に
δr/δy=si...続きを読む

Aベストアンサー

座標変換や偏微分を教えていると,よくお目にかかる例です.

偏微分の記号は JIS にありますので∂を使うことにします.

本質は redbean さんが書かれているとおりで,
∂r/∂x を計算するとき,何を一定として計算するかの問題です.
通常,独立変数は (x,y) の組,あるいは(r,θ)の組ですから,
x で偏微分するときは y 一定でやるのが常識的です.
つまり,r = √(x^2 + y^2) として,
(1)  ∂r/∂x = x/√(x^2 + y^2) = r cosθ/r = cosθ
です.
一方,r = x/cosθ と考えてθ一定で偏微分すると
(2)  ∂r/∂x = 1/cosθ
となって,(1)(2)では分母分子が逆転してしまいます.

偏微分のときに一定に保った変数を下付で書くのはご存知ですよね.
熱力学でいやと言うほど出てきます.
これを明確に書くなら,
(1)は (∂r/∂x)_y を計算しているのに対し,
(2)は (∂r/∂x)_θ を計算しています.
偏微分の際に一定に保った変数が違うのですから,結果が違っても不思議はありません.

図を描くと状況がもっと明確になります.

     y
   
     │        Q'
     │       /
     │      /
     │     /
     │    P───Q
     │   /
     │  /  R
     │ /
     │/θ
     └────┬───┬─ x
    O     │ dx │

P点から出発して,x を dx だけ増やしたときに,
y 一定ならQ点に行きますが,θ一定ならQ'点に行きます.
このときの r の変化は,
y 一定なら(ほぼ)QR(RはPからOQへの垂線の足,PR がここではうまく描けません),
θ一定なら PQ' です.
△PQQ' と △QRP は相似ですから,QR:PQ = PQ:PQ' = cosθ:1,
すなわち,PQ'/QR = 1/cos^2 θ です.
この因子がちょうど(1)(2)で cos^2 θ倍違うことに相当しています.

座標変換や偏微分を教えていると,よくお目にかかる例です.

偏微分の記号は JIS にありますので∂を使うことにします.

本質は redbean さんが書かれているとおりで,
∂r/∂x を計算するとき,何を一定として計算するかの問題です.
通常,独立変数は (x,y) の組,あるいは(r,θ)の組ですから,
x で偏微分するときは y 一定でやるのが常識的です.
つまり,r = √(x^2 + y^2) として,
(1)  ∂r/∂x = x/√(x^2 + y^2) = r cosθ/r = cosθ
です.
一方,r = x/cosθ と考えてθ一定で偏微分すると
(2)  ...続きを読む

Q3次元の極座標について

x=rsinθcosφ
y=rsinθsinφ
z=rcosθ
というのが3次元における極座標表示のようですが、なぜこのような式になるんですか?

このような式にいたるまでの過程を教えてください。
できるだけ分かりやすく教えてほしいので、行列などを使っての説明はできるだけしないでください。

よろしくお願いします。

Aベストアンサー

図を書けば一発なんですが.式でやりましょう.図を書きながら読んでください.

Oを原点とし,P(x,y,z)とします.

Pからz軸に垂線PHを下ろします.

∠POH=θ

ですから,

PH=rsinθ

z=rcosθ(第3式)

z軸の真上からPをみると,Pはxy平面上にあるように見え,そのときの平面極座標が(PH,φ)になります.

よって

x=PHcosφ,y=PHsinφ

となります.すなわち

x=rsinθcosφ(第1式)

y=rsinθsinφ(第2式)

Q円筒座標系でのナブラ、ラプラシアン

流体力学のナビエ・ストークス方程式を
勉強しています。

途中で、円筒座標系における
ナブラ∇、およびラプラシアンΔ
が出てきて、
∇=(∂/∂r, ∂/r∂θ, ∂/∂z)
Δ=∂^2/∂r^2 + ∂/r∂r + ∂^2/(r^2∂θ^2) + ∂^2/∂z^2
となっています。
なぜ、変なところでrで割り算したり、
ラプラシアンの項が四つになったりしているのでしょうか。
どなたか分かる方、教えていただきたいです。

Aベストアンサー

 
 
 円筒(または円柱)座標ですね;

  x → r  長さ→長さ
  y → θ 長さ→角度
  z → z  長さ→長さ

 時計の針がちょっと回転したとき、先端の動きは 針の長さ方向と直交してますね。x と y のように。
針の長さを r、ちょっとの回転角度を dθ とすれば
先端の動きは r dθ です。
dr を dx だとすれば、それに直交する dy は r dθです、
つまり、
  ∇=(∂/∂x, ∂/∂y,   ∂/∂z)
  ∇=(∂/∂r, ∂/r∂θ, ∂/∂z)


 △の方は、(r^2∂θ^2) が dy^2 だと気付いて欲しいんですが、微分の基本の公式
  (fg)' = f'g + fg'
で、項を増やしたあとのようですね。
ご自分で確認してください。
 
 


人気Q&Aランキング