「夫を成功」へ導く妻の秘訣 座談会

ボルテージフォロワの精度についてお教え下さい

“DC24V => 電圧を1/8に圧縮 => [?] => PIC16F88のADCに入力 => 測定結果を10ポイントのLEDに表示”の回路を検討中ですが,[?](ボルテージフォロワ)の回路についてお教え下さい.

DC24Vはバッテリィで,モータが接続されているため最悪の場合およそ電源電圧の2倍のおよそ50V位まで上昇する事があるようです(オシロスコープでの観測結果).
それを,単純に1/8に圧縮した電圧にするとPIC16FF88のADCへの入力電圧が6.25Vになって,ADCの入力規格をオーバーします.
ADC入力の保護などのためオペアンプのボルテージフォロワ回路を挿入したいと思っています.

そこでお聞きしたいのですが,ボルテージフォロワ回路の精度はどうなのかお教え下さい.
また,その様な使い方の適したオペアンプにはどの様な品種があるのでしょうか?
尚,ADC入力電圧の希望精度は0.5%以下です.

電圧はPIC16F88などの電圧は5Vの単一電源です.
基準電源にはuPC1093(NEC,4.096Vに調整)を使用予定.

このQ&Aに関連する最新のQ&A

A 回答 (6件)

ANo.4 の補足です。


R1/R2 と R4/R3 が 10.7 ~ 10.8 の範囲になるようにするところですが、半固定抵抗は経時変化や接点劣化があるため、以下のように、固定抵抗3本で作る方法が良いかと思います。

   ─ 10kΩ ┬ 1.5kΩ ┬─
         └ 1.5kΩ ┘

1% 精度の抵抗 [1] を使うと、この合成抵抗は最悪の場合 10.64kΩ ~ 10.86kΩ の範囲になります(選別しないと R1/R2 と R4/R3 が 10.7 ~ 10.8 の範囲からでてしまう)。0.1% 精度の抵抗 [2] を使うと 10.74kΩ ~ 10.76kΩ の範囲になります。0.1% 精度の抵抗は1本 110円と高価ですが、1% 精度の抵抗から選別するよりは安上がりだと思います。この場合、R2 と R3 も0.1% 精度の抵抗にする必要があります。

[1] 1% 精度の金属皮膜抵抗(1/4W) http://www.sengoku.co.jp/modules/sgk_cart/search …
[2] 0.1% 精度の金属皮膜抵抗(1/4W) http://www.sengoku.co.jp/modules/sgk_cart/search …
    • good
    • 0
この回答へのお礼

レスが遅れて失礼しましたが,ご教授ありがとうございました.
参考にさせて頂きます.

お礼日時:2008/07/31 08:35

測定の主旨は理解しました。


入力電圧 Vin から 22V 差し引いた電圧を出力する回路(配線図)を以下に示します。

             ┌───────── Vout = Vin - 22V
        ┌ R3 -) ─────┐
        │   │┏━━━┓ │
        ├ R4 ┴┨1   8┠ )┬─ 5V
        └───┨2   7┠┤ C     ┌─ R5 ─ 4.096V
   Vin ─ R1 ┬──┨3   6┠┘│  ┌→ VR
 0 ~ 26V   R2 ┌┨4   5┠─ ) ─┤  │
          │  │┗━━━┛  │  C  R6
  GND ───┴─┴──────┴─┴─-┴─ 0V
              LMC662

   R1/R2 = 10.742、R4/R3 = 10.742
   R5 = 4.7kΩ、R6 = 4.7kΩ
   VR(半固定抵抗) = 100Ω
   C = 0.1μF(積層セラミック)

“アナログ回路”はさっぱりとのことなので動作理論は省略し、注意点と調整方法だけ書いておきます。
この回路では、入力電圧 Vin から 22V を差し引いた電圧が OPアンプの出力(1pin)に出てきます。
   Vout = Vin - 22V
OPアンプの出力電圧は 0 ~ 5V の範囲なので、Vin ≦ 22V では Vout = 0V(10mV程度)、Vin ≧ 27V では Vout = 5V(4.99V程度) となります。PICのAD変換器で測定できる電圧は 0V ~ 4.096V なので、測定可能な入力電圧は 22V ≦ Vin ≦ 26.096V となります。PICで測定した電圧に 22V を加えれば入力電圧になります。
  Vin = 測定電圧(Vout) + 22V --- (2)

【注意点】
・抵抗の種類
この回路はかなり高精度になるので、精度1%の金属皮膜抵抗を使ったほうがいいです。抵抗値に合わせ込みは半固定抵抗を使うので、精度の悪い抵抗でも良いのですが、そのような抵抗は周囲温度の変化や経時変化で抵抗値が変わってしまうので、できれば金属皮膜抵抗を使ってください。

・抵抗の発熱
Vin = 50V のときに R1 の発熱が最も大きく、0.2W 程度になります(この発熱量は R1 = 10.7kΩの場合で、それより小さくすると発熱量が増えます)。しかし Vin = 50V の状態が長時間続かないのであれば、1/4W の許容電力のもの(φ3mm程度の普通の抵抗)で構いません。他の抵抗の発熱はそれよりずっと低いので問題ありません。

・R1 ~ R4 の抵抗の精度
式(2)で計算した Vin の精度を 0.5% 以下にするには、 R1/R2 と R4/R3 が 10.7 ~ 10.8 の範囲になるようにしてください。
市販の抵抗だと、このような中途半端は抵抗比は作れませんが、例えば R2 と R3 を、1kΩ として、R1 と R4 が 10.7kΩ ~ 10.8kΩ となるように、R2 や R4 を以下のような構成にして半固定抵抗を調整すればいいでしょう。

   ─ 10kΩ ─ VR(1kΩ) ┬─
            ↑   │
            └──┘
たとえば、最初に R2 (1kΩ)の抵抗値をテスター(4桁以上の精度)で測定して、 上のように10kΩと半固定抵抗で構成した R1 の抵抗値がその10.7 ~ 10.8 倍になるように半固定抵抗を調整します。R4/R3 を 10.7 ~ 10.8 となるようにする場合も、最初に R3 の抵抗値をテスターで測定して、 R4 の抵抗値がその10.7 ~ 10.8 倍になるように半固定抵抗を調整します。

・配線について
  ・R1 ~ R4 とパスコン(C)と VR はOPアンプの端子の近くに実装し、配線を極力短くする
  ・OPアンプの出力(1pin)とPIC間の配線も極力短くする
  ・GNDラインの引き回しも極力短くする(銅箔テープがお薦め)

【調整方法】
  ・Vin に 23.00V を印加したとき、OPアンプの出力(1pin)が 0.999V~1.001V の範囲に入るように VR を調整する。この範囲に入らないときは R5と R6 を 3.3kΩ に変更する。
  ・Vin に 22V を加えたとき Vout < 10mV、Vin に 26V を加えたとき 3.99V ≦Vout < 4.01V となっていることを確認する

【補足】
OPアンプの 5pin の電圧を V5 としたとき、出力電圧 Vout は次式で表わされます。
   Vout = ( 1 + R4/R3 )/( 1 + R1/R2 )*Vin - ( R4/R3 )*V5
今回の回路は ( 1 + R4/R3 )/( 1 + R1/R2 ) = 1、R4/R3 = 10.7~10.8 となるようにしたものです。したがって、( R4/R3 )*V5 の部分を 22V にするために、V5 = 4.096V/2 = 2.048V としています。なぜ半分の電圧にしているのかというと、V5 = 4.096V だと、OPアンプの最大入力電圧を越えてしまうからです(V5 は 3V以下にしたほうがいい)。V5 を変えれば Vin から差し引く電圧を変えることができます。VR を 1kΩ などに変更すれば V5 の可変範囲を大きくすることができます。V5 に加える電圧はVout に加える「ゲタ」になるので、V5 を変えることでOPアンプのオフセット電圧による誤差をゼロにすることができます。上の調整方法では、基準電圧の誤差とOPアンプのオフセット電圧による誤差を、VRを調整することでゼロにしています。

なお、この回路では Vin = 50V としてもOPアンプは壊れません。R1 が電流制限抵抗になっていて、OPアンプの内部にも保護回路が入っているので、OPアンプの入力端子電圧は 6V 以上にはなりません。R1 の抵抗値を小さくすると、抵抗の発熱が大きくなるだけでなく、Vin > 50V としたときのOPアンプの入力端子に流れる電流が増えてしまう(耐圧が減る)ので、R1 > 10kΩ としてください。
    • good
    • 0
この回答へのお礼

inari1 様
ご丁寧なレスを頂きまして,誠にありがとうございました.

私なりに,色々考えてまた調査・実験などして回路を決定したいと思います.

“教えてgoo”に発表できる場があれば,出来る範囲で発表したいと思います.

お礼日時:2008/07/17 13:09

詳しい説明は今夜以降でよろしいでしょうか。



>R2とパラに6V程度のツェナダイオードを接続すれば宜しいでしょうか?
ツェナダイオードは不要です。入力電圧が50Vでも、OPアンプ内部の保護ダイオードと R1 の働きで、OPアンプの入力電圧は6V以上になりません。

>2)例えば入力電圧に下駄を履かせて22~26Vの電圧を拡大する方法はあるのでしょうか?
できます。入力電圧 Vin に対して、OPアンプの出力電圧 Vout を以下のようにすることができます。
   Vout = Vin - 22V
22Vのところは変えられます。Vout は正の電圧しか出ないので Vin < 22V でも Vout = 0 になります。この場合もツェナダイオードは不要です。基準電圧 4.096V を使って差動増幅回路にします。OPアンプは LMC6621個で済みます(内部の2回路を使う)。詳しくはのちほど・・・仕事にいきますので
    • good
    • 0

私なら、抵抗で分圧して例えば、DC24Vの時に分圧電圧を4VをADC入力としてpicの入力に4.8Vのツェナーダイオードを付けて過入力保護をします。


それに並列に小さなコンデンサーを付けて予期できないパルスから保護します。
ツェナーダイオードはツェナー電圧のバラツキに注意して選定します。
    • good
    • 0

AD変換の速度によってOPアンプを選ぶ必要がありますが、1MHz未満であれば定番のLMC662 [1] というのが使えます。

このOPアンプはCMOSタイプなので、OPアンプの電源電圧を 5V とした場合、出力電圧は 0V から 4.9V まで出ます。「ADC入力電圧の希望精度は0.5%以下にする」という点についてですが、フルスケール入力(4.096V)に対しての精度の意味なら、20.5mV の誤差に相当するのでLMC662は大丈夫です。LMC662の入力オフセット電圧は最大 3mV なので、利得1のボルテージフォロアで使った場合、入力電圧と出力電圧の差は最大±3mV になります。たとえば、入力電圧が 0V のときのLMC662の出力電圧は±3mV の範囲になります。入力電圧が 4V の場合の出力電圧は4V±3mV の範囲になります。LMC662は2回路入りなので1個しか使わないときは、使わないほうのOPアンプは下図のように接続してください。

             LMC662
 入力電圧 ─┐     8┌───┬─────┬──-┬──────── 5V
 0V~50V   R1   3┏┷┓1 0.1μF    ┏━┷━┓ 0.1μF   LMC662
         ├───┨+ ┠┬─ )───┨    ┠  │     5┏━┓7
         R2  2┌┨- ┃│ │     ┨ PIC ┠  │  ┌-─┨+ ┠┐
 GND0V) ─┤    │┗┯┛│ │     ┨    ┠  │  │6┌┨- ┃│
         │   └─ ) ─┘ │     ┨    ┠  │  │ │┗━┛│
         │      │4    │     ┗━┯━┛ │  │ └───┘
         └────┴───┴─────┴───┴─┴────── 0V
 R1 = 100kΩ+10kΩ(直列接続)、R2 = 10kΩ

入力電圧を 1/12 に圧縮する場合は、R1 を110kΩ、R2 を 10kΩとします。この場合、24V入力したときのOPアンプの出力は 2V ± 3mV、50V入力のときは 4.167V± 3mV となります。なお、上図にも書きましたが、OPアンプの電源端子(8pin)とGND端子(4pin)の間には、最短距離でパスコン(0.1μF積層セラミック)を入れてください。PICマイコンにもパスコンを入れてください。OPアンプの入力インピーダンスは非常に高いので、ノイズを避けるために、R1とR2とOPアンプの非反転入力端子(3pin)を結ぶ配線は極力短くしてください。OPアンプの出力端子(1pin)とPIC間の配線もなるべく短くしてください。隣接pin間の配線(1-2pin、6-7pin)は余計な配線の引き回しをせずにpin間をショートすればいいです。

[1] LMC662 価格 http://akizukidenshi.com/catalog/items2.php?q=%2 …
        データシート(日本語) http://www.national.com/JPN/ds/LM/LMC662.pdf
    • good
    • 0
この回答へのお礼

inara1 様
ご丁寧なレスありがとうございました.
精度が重要な場合は“入力オフセット電圧の小さい品種を選ぶ”という事が良く分かりました.

分圧抵抗ですが,R1=18KΩ,R2= 2KΩにして入力電圧を1/10に圧縮してPIC16F88のADC入力に取り込むつもりです.
尚,基準電源(Vref)にuPC1093を使用すると書きましたが,それを4.096Vに設定すると,10bit ADCの分解能が1LSB=4mVになります.
従って,測定できる電圧は
10bitADC=>0~1023=>(0~1023)*4mV*10=>0~40.96V(実際のバッテリィ電圧)になる予定です.

<追加質問>
1)実際の測定電圧は24~26Vなので,LMC622入力の保護としてはR2とパラに6V程度のツェナダイオードを接続すれば宜しいでしょうか?
2)例えば入力電圧に下駄を履かせて22~26Vの電圧を拡大する方法はあるのでしょうか?
 方法があれば,別途質問させていただきたいと思います.
 即ち,今回の目的とするところは24~26Vの付近の電圧をチェックするだけで良いのです.
 そして,バッテリィ電圧が24V未満になった時に警報を出します.
              -以上-

お礼日時:2008/07/03 15:17

測定結果を10ポイントのLEDに表示するだけなら、「ADC入力電圧の希望精度0.5%以下」はオーバースペックで、ボルテージフォロワの精度を気にするレベルではありません。

「測定結果を10ポイントのLEDに表示する」というのが単に表示部分だけであって、それとは別に、AD変換結果を PC などに取り込むために「ADC入力電圧の希望精度は0.5%以下にする」というのなら別ですが。

ADC入力電圧が PICの電源電圧を越える場合もあるということについてですが、この対処法としては、ボルテージフォロワに出力電圧制限回路を付加するなど、方法はいろいろありますが、根本的には、ADC入力電圧がPICの電源電圧(5V)を越えないように、入力アッテネータ(電圧を1/8に圧縮)の圧縮率を 1/12.2 以下に変更するのが最も手っ取り早い方法です。入力電圧を 1/12.2 にすれば、入力電圧が 50V のときのADC入力電圧は 4.098V となるので PIC は壊れません。ただし、そうすると、入力電圧が 24V のときのADC入力電圧は1.967V となるので、基準電圧が 4.096V のままだと分解能が落ちてしまいます。基準電圧を4.096Vではなく1.967V とすれば、24V以下の入力電圧については10bitフルでAD変換できますが、その場合、24Vを超える電圧の測定ができないので、入力電圧が 24V を越える場合のデータが必要ならば基準電圧は 4.096V のままにしたほうが良いでしょう。

ボルテージフォロワの精度に関してですが、OPアンプの電源電圧を PIC の電源電圧と同じとする場合、OPアンプによっては、出力電圧が 4.096Vまで出ないことのほうが問題です。以下のように、OPアンプの反転入力端子(-)と出力端子を短絡すれば、利得 1 のボルテージフォロワ回路になりますが、LM358 など汎用の単電源OPアンプだと、OPアンプの出力電圧が 3.5V以上出ません。

             OPアンプ
 入力電圧 ─┐      ┌──────┬── 5V
 24V~50V  R1    ┏┷┓    ┏━┷━┓
         ├───┨+ ┠┬──┨    ┠
         R2   ┌┨- ┃│   ┨ PIC ┠
 GND (0V) -┤   │┗┯┛│   ┨    ┠
         │   └─ ) ─┘   ┨    ┠
         │      │      ┗━┯━┛
         └────┴──────┘

出力電圧が電源電圧いっぱいに出るOPアンプはいろいろありますが、入力信号の最大周波数によっては使えないものもあります。入力信号の最大周波数はいくつでしょうか?
    • good
    • 0
この回答へのお礼

inara1 様
度々ご丁寧なレスありがとうございました.
※申し送れましたが,質問者は“アナログ回路”はさっぱりで,ロジック回路も見よう見まねの独学です.

少し補足します.
1.バッテリィの電圧は50V位まで跳ね上がる事がありますが,LEDに表示する実際の電圧範囲は下記(2.)の様に考えています.

2.バッテリィ電圧とLEDの点灯の関係(色々ありLEDを5個にしました)
    赤 黄 緑 緑 緑 VBB;バッテリィ電圧[V]
  1 × × × × ● 25.4≦VBB
  2 × × × ● ● 25.2≦VBB<25.4
  3 × × × ● × 25.0≦VBB<25.2
  4 × × ● ● × 24.8≦VBB<25.0
  5 × × ● × × 24.6≦VBB<24.8
  6 × ● ● × × 24.4≦VBB<24.6
  7 × ● × × × 24.2≦VBB<24.4
  8 ● ● × × × 24.0≦VBB<24.2
  9 ● × × × ×  VBB<24.0, 電圧低下警報を出力
  (凡例)×;消灯,●;点灯

※ADCに入力した電圧を移動平均法で演算し,LEDにその結果を表示させます.

“入力信号の最大周波数”についてはそんなに深く考えていません=>1KHzもあれば十分と考えています.
測定周期は10Hz程度と考えています.
基本的にはバッテリィの過放電防止と充電時期の目安の出力です.

              -以上-

お礼日時:2008/07/03 15:42

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qオペアンプのボルテージフォロアの帰還抵抗

オペアンプでボルテージフォロアを組む場合、教科書ではVoutと-入力を短絡すればいいと書いてあるのですが、あるアンプの回路をみたら短絡ではなく10kオームになっていました。
先輩に聞いたら発振防止のために入れるらしいですが、なぜ10kオームなのかという理由はわかりませんでした。
抵抗を入れるのはどういう場合なのでしょうか。
抵抗を入れる場合は定数をどうやって決めるのでしょうか。
教えてください。

Aベストアンサー

短絡でなく10kオームとなっているのは、+入力から見た信号源インピーダンスと-入力から見た信号源インピーダンスの差を小さくし、出力のDCオフセットとDCドリフトを小さくするためでしょう(バイアス電流の影響)。

ただし、ここに10kオームを入れると、高い周波数でのフィードバック位相が-入力の容量の影響で遅れますので、発振しやすくなります。
この場合、10kオームとパラレルにコンデンサを入れることもあります(位相補償)。

Qボルテージフォロワの役割がよく分かりません。

ボルテージフォロワは、電流が流れることで寄生抵抗によって電圧値が低下しないようにするために、回路の入力段及び出力段に入れるものであると思いますが、
これを入れるのと入れないのでは具体的にどのような違いが表れるのでしょうか?

オペアンプを使った回路では通常、電流は流れないはずですので、このようなものは必要ないように思うのですが、どのような場合に必要になるのでしょうか?

Aベストアンサー

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗にほぼ等しい。この抵抗の大きさはさほど大きくできない。)
非反転増幅回路を用いると、入力インピーダンスを大きくすることができます(非反転増幅回路の入力インピーダンスは非反転入力と反転入力のピン間インピーダンスにほぼ等しく、かなり大きな値になる。)が、増幅率が1よりも大きくなってしまいます。
これを元の信号のレベルに下げるために抵抗で分圧してしまうと、分圧に使用した抵抗分出力インピーダンスが増えてしまいます。これでは何のためにオペアンプを入れて電流の影響を減らしたの意味がなくなってしまいます。
元の電圧のまま、次の段に受け渡すにはボルテージフォロワがよいということになります。


次に、#1の補足に対して。
>反転増幅回路と非反転増幅回路は単に反転するかしないかの違いだと思っていたのですが、
>それ以外に特性が異なるのですか?
これは、上でも述べていますが、反転増幅回路と非反転増幅回路は、増幅回路の入力インピーダンスが異なります。
信号源の出力インピーダンスが大きく、電流が流れると電圧が変化してしまような用途では入力インピーダンスを高くできる非反転増幅が有利です。

>・出力インピーダンスとは出力端子とグラウンド間のインピーダンスだと思っていたのですが、それでいくと分圧するということは
>出力インピーダンスを下げることになるのではないのでしょうか?
違います。出力インピーダンスとは信号を発生させている元と入力先との間のインピーダンスを意味します。
出力インピーダンスは信号源から流れる電流による電圧降下の大きさを決定付けます。
オペアンプを使った回路での出力インピーダンスは、理想的な状態ですはゼロになります。
分圧用の抵抗を入れてしまうと、分圧に使用した抵抗のうち信号源と入力先に入っている抵抗分が出力インピーダンスとして寄与していしまいます。

>・それと非反転増幅回路の出力を抵抗などで分圧することで増幅率を1以上にするデメリットを教えて下さい。
これは、何かの勘違いですね。
非反転増幅回路で増幅率を1よりも大きくしたいのなら分圧などする必要はありません。
非反転増幅で増幅率を1以下にしたい場合は、何らかの方法で信号を減衰させる必要があります。ここで分圧を使うのはあまり好ましいことではないということです。

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗...続きを読む

Qオペアンプに使用するパスコンは何故0.1μFなのでしょう?

いろいろ本を見てもパスコンは0.1μFをつければいい。という内容が多く、
何故パスコンの容量が0.1μFがいいかというのがわかりません。
計算式とかがあるのでしょうか?

Aベストアンサー

下記の「図2コンデンサの特性:(b)」を見てください。
http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

0.1μFのセラコンは、ほぼ8MHzで共振しています。
つまり8MHzまではキャパシタとしての特性を示しており、これより高い周波数ではインダクタと
なってしまうことがわかります。

0.1μFは単純に計算すると8MHzで0.2Ωのインピーダンスを示し、これは実用上十分低い
インピーダンスと考えられます。
つまり、大ざっぱにいって、10MHzまでは0.1μFのセラコンに守備を任せることができるわけです。
(従って、当然のことですが、10MHz~1GHzを扱うデバイスでは0.1μFでは不十分で、0.01μF~10pFといったキャパシタを並列に入れる必要が出てきます)

では低域の問題はどうでしょうか?
0.1μFは1MHzで2Ω、100kHzでは20Ωとなり、そろそろお役御免です。
この辺りからは、電源側に入れた、より大容量のキャパシタが守備を受け持つことになります。
(この「連携を考えることが、パスコン設計の重要なポイント」です)

ここで考えなければならないのが、この大容量キャパシタと0.1μFセラコンとの距離です。
10MHzは波長30mです。
したがって、(これも大ざっぱな言い方ですが)この1/4λの1/10、すなわち75cmくらいまでは、回路インピーダンスを問題にしなくてよいと考えます。

「1/40」はひとつの目安で、人によって違うと思いますが、経験上、大体これくらいを見ておけば、あまり問題になることはありません。
厳密には、実際に回路を動作させ、て異常が出ればパスコン容量を変えてみる、といった
手法をとります。

上記URLは、横軸目盛りがはっきりしていないので、お詫びにいくつかのパスコンに関するURLを貼っておきます。
ご参考にしてください。
http://www.rohm.co.jp/en/capacitor/what7-j.html
http://www.cqpub.co.jp/toragi/TRBN/contents/2004/tr0409/0409swpw.pdf
http://www.murata.co.jp/articles/ta0463.html

参考URL:http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

下記の「図2コンデンサの特性:(b)」を見てください。
http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

0.1μFのセラコンは、ほぼ8MHzで共振しています。
つまり8MHzまではキャパシタとしての特性を示しており、これより高い周波数ではインダクタと
なってしまうことがわかります。

0.1μFは単純に計算すると8MHzで0.2Ωのインピーダンスを示し、これは実用上十分低い
インピーダンスと考えられます。
つまり、大ざっぱにいって、10MHzまでは0.1μFのセラコンに守備を任せることができるわけ...続きを読む

Qボルテージフォロワが発振しないようにするにはどうしたら良いですか?

帯域の大きなオペアンプを使ってボルテージフォロワ回路を組んだ場合で、
被測定対象の容量が大きな場合など
どうしても発振してしまう場合どうすれば良いのでしょうか?
ボルテージフォロワの帯域を下げるにはどうしたら良いのか教えて頂けますでしょうか?
http://focus.tij.co.jp/jp/lit/an/jaja130/jaja130.pdf
このページに一応解説がなされているのですが、出来る限り入力インピーダンスを下げずに発振を抑えたいので、
6ページにある3.3の方法がもっとも有効だということになるのでしょうか?
ボルテージフォロワの発振を抑えるというか単にローパスフィルタで見えなくしているだけのように思うのですが、
これで最良の方法なのでしょうか?

Aベストアンサー

最もよく使われている方法は、ボルテージフォロワと容量負荷の
間を小さい抵抗(10Ωとか)で分離するやりかたです。この場合
入れた抵抗R1のせいで出力電圧が減衰するので、この抵抗の後から
負帰還をかけます。(R2経由)

もしC1やR2がないと、抵抗R1と負荷C2によるLPFで位相が遅れ、
さらに発振しやすくなってしまうので、添付の図のように高い
周波数はOPアンプから直に帰還されるようにします。(C1経路)

これで安定にはなりますが、全体としての高周波特性が悪化
します。出力に抵抗を直列に入れた時点で、OPは容量負荷を
ドライブすることを放棄したようなもので、さらに高い周波数は
負荷を無視して帰還しているのですから。

どうしても容量負荷自体に対して、高い周波数までフォロワとして
働いて欲しい場合は、これはドライブ能力を増すしかありません。
負荷容量で位相が遅れるのが発振の原因ですから、位相が遅れない
ようにアンプの出力抵抗を下げるしかない訳です。

なお、CR直列回路を負荷に入れる(6ページ3.3の方法)は必ず
発振が止まるという方法ではありません。高周波で負荷が純粋な
容量に見えるよりは、抵抗成分も並列になっていて位相の遅れが
制限されることで安定になる、という狙いですので、容量負荷が
重いときはあまり効きません。

ただ、LPFで発振を見えなくしているといったインチキでは
ありません。ちゃんと帰還ループ一巡での位相を考えた方法です。

最もよく使われている方法は、ボルテージフォロワと容量負荷の
間を小さい抵抗(10Ωとか)で分離するやりかたです。この場合
入れた抵抗R1のせいで出力電圧が減衰するので、この抵抗の後から
負帰還をかけます。(R2経由)

もしC1やR2がないと、抵抗R1と負荷C2によるLPFで位相が遅れ、
さらに発振しやすくなってしまうので、添付の図のように高い
周波数はOPアンプから直に帰還されるようにします。(C1経路)

これで安定にはなりますが、全体としての高周波特性が悪化
します。出力に抵抗を直列に入れた...続きを読む

Qプルアップ抵抗値の決め方について

ほとんどこの分野に触れたことがないので大変初歩的な質問になると思います。

図1のような回路でプルアップ抵抗の値を決めたいと思っています。
B点での電圧を4.1Vとしたい場合について考えています。その場合、AB間での電圧降下は0.9Vとなります。

抵抗値×電流=0.9Vとなるようにプルアップ抵抗の値を決めるべきだと考えていますが、この抵抗に流れる電流が分からないため、決めるのは不可能ではないでしょうか?

抵抗値を決めてからやっと、V=IRより流れる電流が決まるため、それから再度流れる電流と抵抗を調節していって電圧降下が0.9Vとなるように設定するのでしょうか。どうぞご助力お願いします。



以下、理解の補足です。
・理解その1
ふつう、こういう場合は抵抗値を計算するためには、電圧降下と抵抗に流れる電流が決まっていることが前提だと考えていました。V=IRを計算するためには、この変数のうち2つを知っていなければならないからです。
また、例えば5V/2Aの電源を使った場合、マイコン周りは電源ラインからの分岐が多いため、この抵抗に2A全てが流るわけではないことも理解しています。

電源ラインからは「使う電流」だけ引っ張るイメージだと理解しているのですが、その「使う電流」が分からないため抵抗値を決定できません。(ポート入力電流の最大定格はありますが…)


・理解その2
理解その1で書いたように、抵抗値を計算するためには、電圧降下と抵抗に流れる電流が必要だと理解しています。図2を例に説明します。Rの値を決めたいとします。
CD間の電圧降下が5Vであることと、回路全体を流れる電流が2Aであることから、キルヒホッフの法則より簡単にRの値とそれぞれの抵抗に流れる電流が分かります。今回の例もこれと同じように考えられないのでしょうか。

ほとんどこの分野に触れたことがないので大変初歩的な質問になると思います。

図1のような回路でプルアップ抵抗の値を決めたいと思っています。
B点での電圧を4.1Vとしたい場合について考えています。その場合、AB間での電圧降下は0.9Vとなります。

抵抗値×電流=0.9Vとなるようにプルアップ抵抗の値を決めるべきだと考えていますが、この抵抗に流れる電流が分からないため、決めるのは不可能ではないでしょうか?

抵抗値を決めてからやっと、V=IRより流れる電流が決まるため、それから再度流れる電流と抵抗を調...続きを読む

Aベストアンサー

NO1です。

スイッチがONした時に抵抗に流れる電流というのは、最大入力電流や最大入力電圧
という仕様から読めば良いのでしょうか。
→おそらくマイコンの入力端子の電流はほとんど0なので気にしなくてよいと思われます。
入力電圧は5Vかけても問題ないかは確認必要です。

マイコンの入力電圧として0Vか5Vを入れたいのであれば、抵抗値は、NO3の方が
言われているとおり、ノイズに強くしたいかどうかで決めれば良いです。
あとは、スイッチがONした時の抵抗の許容電力を気にすれば良いです。
例えば、抵抗を10KΩとした場合、抵抗に流れる電流は5V/10kΩ=0.5mAで
抵抗で消費する電力は5V×0.5mA=0.0025Wです。
1/16Wの抵抗を使っても全く余裕があり問題ありません。
しかし、100Ωとかにしてしまうと、1/2Wなどもっと許容電力の大きい抵抗を
使用しなければいけません。
まあ大抵、NO3の方が書かれている範囲の中間の、10kΩ程度付けておけば
問題にはならないのでは?

Q計算値と理論値の誤差について

交流回路の実験をする前に、ある回路のインピーダンスZ(理論値)を計算で求めたあと、実験をしたあとの測定値を利用して、同じ所のインピーダンスZ(計算値)を求めると理論値と計算値の間で誤差が生じました。
そこでふと思ったのですが、なぜ理論値と計算値の間で誤差が生じるのでしょうか?また、その誤差を無くすことはできるのでしょうか? できるのなら、その方法を教えてください。
あと、その誤差が原因で何か困る事はあるのでしょうか?
教えてください。

Aベストアンサー

LCRのカタログ値に内部損失や許容誤差がありますが、この誤差は
1.Rの抵抗値は±5%、±10%、±20% があり、高精度は±1%、±2%もあります。
2.Cの容量誤差は±20% 、+50%・ー20% などがあり
3.Lもインダクタンス誤差は±20%で、
3.C・Rは理想的なC・Rでは無く、CにL分、Lに抵抗分の損失に繋がる成分があります。
これらの損失に繋がる成分は、試験周波数が高くなると、周波数依存で増大します。
また、周囲温度やLCRの素子自身で発生する自己発熱で特性が変化します。
測定器や測定系にも誤差が発生する要因もあります。
理論値に対する測定値が±5%程度発生するのは常で、実際に問題にならないように、
LCRの配分を工夫すると誤差やバラツキを少なく出来ます。
 

Qカットオフ周波数とは何ですか?

ウィキペディアに以下のように書いてました。

遮断周波数(しゃだんしゅうはすう)またはカットオフ周波数(英: Cutoff frequency)とは、物理学や電気工学におけるシステム応答の限界であり、それを超えると入力されたエネルギーは減衰したり反射したりする。典型例として次のような定義がある。
電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
導波管で伝送可能な最低周波数(あるいは最大波長)。
遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。


ですがよくわかりません。
わかりやすく言うとどういったことなのですか?

Aベストアンサー

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です。



電子回路の遮断周波数の場合
-3dB はエネルギー量にして1/2である事を意味します。
つまり、-3dBなるカットオフ周波数とは

「エネルギーの半分以上が通過するといえる」

「エネルギーの半分以上が遮断されるといえる」
の境目です。

>カットオフ周波数は影響がないと考える周波数のことでよろしいでしょうか?
いいえ
例えば高い周波数を通すフィルタがあるとして、カットオフ周波数が1000Hzの場合
1010Hzだと51%通過
1000Hzだと50%通過
990Hzだと49%通過
というようなものをイメージすると解り易いかも。

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です...続きを読む

Q入力インピーダンスと出力インピーダンスについて

電気回路の初心者です。ネットのサイトで次のような説明を読みました。

入力インピーダンス(抵抗)が大きいと、電流があまり流れません。
電流があまり流れないと言う事は、半導体が作動するのにエネルギーが少なくてすむ (= 電圧降下が小さい) ということです。
作動エネルギーが少ないと、他の回路へエネルギー(電圧)を、振り分けることが出来きます。
以上の理由により、 入力インピーダンスは高いほど良い ということになります。
(略)
出力インピーダンスとはなんでしょうか?
マイクのように、信号を発信する側が、もともともっている内部抵抗です。
では、出力インピーダンスは、低いほど良い理由はなぜでしょうか?
マイクの出力インピーダンス(内部抵抗)が大きいと、自分自身でエネルギー(電圧)を使ってしまい、小さな音しか出せません。

私にはこの説明が理解できません。
入力インピーダンスの説明では、インピーダンスが大きいと、半導体が作動するのにエネルギーが少なくてすむ、と言っています。
ところが出力インピーダンスの説明では、インピーダンスが大きいと自分自身でエネルギーを使ってしまう、つまり多くのエネルギーが必要だと言っています。どう考えればいいのでしょうか。
何か基本的なことが理解できていない気がしてストレスがたまっています。

電気回路の初心者です。ネットのサイトで次のような説明を読みました。

入力インピーダンス(抵抗)が大きいと、電流があまり流れません。
電流があまり流れないと言う事は、半導体が作動するのにエネルギーが少なくてすむ (= 電圧降下が小さい) ということです。
作動エネルギーが少ないと、他の回路へエネルギー(電圧)を、振り分けることが出来きます。
以上の理由により、 入力インピーダンスは高いほど良い ということになります。
(略)
出力インピーダンスとはなんでしょうか?
マイクのように、信...続きを読む

Aベストアンサー

こんにちは。
一生懸命お考えのようですね。
また、電池のモデルでほぼ到達できそうなところとお見受けします。

次のような説明ではいかがでしょうか。
ポイントは、「1Vを出力しようとして1Vとして受け取ってくれるかどうか。直列に入った”出力妨害抵抗”と並列に入った”入力妨害抵抗”が邪魔をする」

・まず、出力装置。出力装置は電池です。
 理想的な出力装置を考えましょう。これは電池(発電機)の一種と考えることができ、「0.5Vを出力すべき」「1Vを出力すべき」とき、それぞれその電圧が確実に出力されるべきでしょう。
出力に100オームの負荷抵抗をつないだとき(電流がそれぞれ5mA、10mAの弱い電流)はもちろん、負荷抵抗が1オームのとき(電流はそれぞれ500mA、1Aの大量の消費電流)
でもでも負けず、出力端子には正確に0.5V、1Vが現れるべきです。
ところが現実には、出力回路内に妨害抵抗が生じます。これは、内蔵電池と出力端子との間に、例えば1オームが「直列に」入っている状態です。
このような出力端子に負荷抵抗をつないでみましょう。
電池が正確に0.5V(又は1V)を発生しており、出力端子の向こう側に100オームの負荷抵抗をつないであるなら、妨害抵抗によってわずかに電圧が低下し、
出力端子電圧は0.495V(又は0.99V)となって端子電圧としては誤差が発生し、さらに負荷抵抗が1オームになると、出力端子の電圧は0.25V(0.5V)で、大幅に不正確になってしまいますね。
「出力インピーダンス」とは、単純には「正確な電圧を発生させる電池と出力端子との間に直列に入っている妨害抵抗」ということができます。

・次に入力装置。テスター(電圧計)と考えましょう。
 理想的なアナログ電圧計を考えましょう。アナログ電圧計は、コイルに電流を流すと永久磁石との間で引力や反発力を生じて、ねじりバネをねじる強さとバランスさせることで
所定の位置まで針を動かすことはご存知でしょう。
安物はコイルの巻き数が少ないので、大きく針を振るためにはたくさんの電流を流す必要がありますが、高価なもの(高感度)は、コイルの巻き数が多く、わずかな電流でも大きく振れます(感度が高い)。この延長で、理想的なアナログ電圧計とは、電流をまったく流さなくても針が大きく振れるものです。
このとき、理想的な電圧計と、安物の電圧計の違いは、「並列に入った妨害抵抗」と考えることができます。
理想的な電圧計はまったく電流が流れないのに、安物は大量に流れる。仮に1V表示するのに安物は1A流す必要があるとすると、抵抗値は1オームとなり、これは、理想的な電圧計に並列に1オームの抵抗を入れたのと同じになります。
 1Vを出力しようとする出力装置が理想的(直列の妨害抵抗が入っていない)なら、どちらの電圧計をつなごうが端子電圧は同じ1Vで、電圧計としても1Vを表示しますが、出力装置の中に1オームの妨害抵抗が直列に入っている場合(出力インピーダンス1オーム)、電圧計が理想的ならなら直列の妨害抵抗があっても電圧降下が生じないので1Vを表示しますが、安物の電圧計(又は等価的につくった、理想的な電圧計に1オームの並列妨害抵抗をつないだもの)では、大きな電圧降下が生じて出力(=入力)端子電圧は0.5Vとなってしまいます。

・・・ということで、「出力インピーダンス」とは「出力に直列の妨害抵抗」と考えれば理解しやすく、「入力インピーダンス」とは「入力に並列の妨害抵抗」であり、どちらか一方が理想的(「直列の妨害が0オーム」か、「並列の妨害が無限大オーム」)ならば他方は理想的である必要はないが、現実には、どちらの妨害抵抗も存在する以上、「出力インピーダンスは小さく、入力インピーダンスは大きい」ほうが望ましいということになります。

(ご質問の中にある、”入力インピーダンスが大きいとエネルギーが少なくてすむ vs 出力インピーダンスが大きいとエネルギーがたくさん必要”の矛盾に関する疑問も、この「直列」と「並列」の関係ならご理解いただけるのではないでしょうか。)

なお、他の方から、「インピーダンスは必ずしも大きい(小さい)ほうが良いのではなく、マッチング(一致)が大切」という意見が出ていますが、これは次のように説明できます。
・「信号」は「情報」を送るので、基本的には”電圧だけが重要で、エネルギー(電力)は食わせたくない”。この前提では、上記の理想論のとおりであり、特に入力インピーダンスは無限大が良い。
・しかし、実際には、エネルギーが必要(アナログ電圧計でもバネをねじる仕事が必要)。したがって、どうしても一定量の電流を流す必要があり、入力インピーダンスを無限大にはできない。
このとき、ある法則により「出力インピーダンスと入力インピーダンスが一致したとき、入力側(受け取る側)に最大のエネルギーを与えることができる」という結果になっているので、両インピーダンスを一致させるのがいちばん良い
・さらに、別の法則から、高周波(高速で電圧が変動するので、長いケーブルにおいてはケーブルの場所によって電圧が異なる)においては、インピーダンスが一致しないと、「信号反射」等により波形が変形してしまうという結果になっている。

さてさて、すっかり長くなってしまいましたがいかがでしょうか。
お役に立てば幸いです。

こんにちは。
一生懸命お考えのようですね。
また、電池のモデルでほぼ到達できそうなところとお見受けします。

次のような説明ではいかがでしょうか。
ポイントは、「1Vを出力しようとして1Vとして受け取ってくれるかどうか。直列に入った”出力妨害抵抗”と並列に入った”入力妨害抵抗”が邪魔をする」

・まず、出力装置。出力装置は電池です。
 理想的な出力装置を考えましょう。これは電池(発電機)の一種と考えることができ、「0.5Vを出力すべき」「1Vを出力すべき」とき、それぞれその電圧が確実に出力さ...続きを読む

Q三相200Vを単相200Vで使用したい

三相200V電源を単相200V電源として使用したいのですが。
三相200Vの場合,R(赤)S(白)T(黒)の3線が電源として配線されておりますが,単相200Vととして使用する場合,R-S,R-T,S-Tのいづれを取っても良いのでしょうか。

以前にいづれかがアースに落ちている場合があると聞いたことがあり,この辺が不明なのですが。

Aベストアンサー

いくつか逆質問になります。

【1】 単相200Vの負荷は何でしょうか。
(a) 電熱器・電気炉、溶接機など。
(b) 蛍光灯・水銀灯、エアコンなど。

(a) のグループでしたら、三相電源に単相負荷をかけることは一般的に認められます。
(b) のグループは、単相三線式の電源で使用することが基本であり、三相電源からの使用は認められません。

【2】 前項の(a)であるとして、単相負荷の容量はどのくらいですか。また、三つに分割できますか。

【3】 三相電源の接地形態はお分かりですか。
(a) 動力専用バンクの三角 (またはV) 結線で一線接地。たぶん S線が接地されている。
(b) 灯動兼用バンクの V結線で、中性点接地。たぶん S線とT銭の中間で接地されている。

(a) のケースで単相負荷を取り出すには、三つに分割できる場合は、各相に均等になるように。(b) のケースでは、電灯と共用されている変圧器の容量が大きいので、中性点が接地されている相につなぐ。

【4】 電力会社との契約種別。
(a) 低圧。
(b) 高圧または特別高圧。

(a) の場合は電力会社の、(b) の場合は主任技術者の指示を仰ぐことが必要です。

いくつか逆質問になります。

【1】 単相200Vの負荷は何でしょうか。
(a) 電熱器・電気炉、溶接機など。
(b) 蛍光灯・水銀灯、エアコンなど。

(a) のグループでしたら、三相電源に単相負荷をかけることは一般的に認められます。
(b) のグループは、単相三線式の電源で使用することが基本であり、三相電源からの使用は認められません。

【2】 前項の(a)であるとして、単相負荷の容量はどのくらいですか。また、三つに分割できますか。

【3】 三相電源の接地形態はお分かりですか。
(a) 動力専用バ...続きを読む

Qオシロの入力インピーダンスについて

私の使っているオシロスコープは入力インピーダンスを
50Ωと1MΩに切り替えることができるのですが、切り替えたらどうなるのかよくわかりません。
マニュアルには観測できる垂直軸(電圧)の領域が1MΩのほうが大きいとしか書いてないです。
同じシグナルを入力したときに50Ωと1MΩとでは波形が違うみたいです。
切り替えると何が起こるのでしょうか?
よろしくお願いします。

Aベストアンサー

50Ω

信号は電力伝送されますから
あまり強い信号を入力してはいけません。
測定相手が50Ω系であれば、配線を切って
オシロに接続することで、反射の無い
きれいな(本来の)波形を観測することができます。
また、50Ωだと受け側は純抵抗に近くなりますから
容量成分で生じる不都合(スパイクなど)も
発生しません。
ただし、配線を切れないところの測定には適しません。
(こちらに電流が流れてしまうため)

1MΩ

信号はハイインピーダンス受けとなりますから、
配線を負荷につないだままで、
もしくは回路の途中からでも信号を取り出して
波形を観測することができます。
しかし、ハイ受けですから、回路に多少影響を
与えます。
また、出力回路のような処では
別に終端抵抗を必要とします。
そしてインピーダンスは高くても
プローブの容量成分(20pFぐらいかな)は
そのまま残りますから
波形に乱れが生じる場合もあります。

なお、オシロの回路は、1MΩ受けに造られていて
50Ωの時は入力端に抵抗が挿入されるように
作られているはずです。

50Ω

信号は電力伝送されますから
あまり強い信号を入力してはいけません。
測定相手が50Ω系であれば、配線を切って
オシロに接続することで、反射の無い
きれいな(本来の)波形を観測することができます。
また、50Ωだと受け側は純抵抗に近くなりますから
容量成分で生じる不都合(スパイクなど)も
発生しません。
ただし、配線を切れないところの測定には適しません。
(こちらに電流が流れてしまうため)

1MΩ

信号はハイインピーダンス受けとなりますから、
配線を負荷につないだ...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング