
△y/△xとdy/dxについて再考
http://okwave.jp/qa/q5719593.htmlの回答#1について質問です。
-----引用-----
ある変化量をそれぞれx,yについてΔx,Δyとすると
dy/dx=lim(Δx→0)Δy/Δx
が定義です。したがってΔy/Δxとdy/dxでは全然違います。
Δy/ΔxについてΔxを限りなく0に近づけた値がdy/dxなのです。
-----引用終-----
y=f(x)において、△y/△xとdy/dxは、似ているものと私は感じます。この考え方はどうも適切さが劣っているようです。どう修正すればよいか教えてください。
添付画像は思考過程のガラス張りです。
No.2ベストアンサー
- 回答日時:
xy 平面上に y = f(x) のグラフを描いて
考えてみては、どうですか?
△y/△x は、曲線上に2点をとって、
2点間の変化率を求めているのであり、
dy/dx は、曲線の接線上に2点をとって、
2点間の変化率を求めているのです。
ですから、
△y/△x では、△x→0 の極限を考えなくては
接線の変化率が出ませんが、
dy/dx では、dx, dy が有限の値のままで
接線の変化率となります。
最初から、接線上なのですから。
なんか凄いです。
スバッときました。
理解咀嚼する時間を要するけれどもとてもピントの合った説明に感じられます。
か謝っT感謝でありがとう。1
No.3
- 回答日時:
リンク先りかいに時間を要すると予感|ゆえに|∴|これにて御礼いたします|
リンク先ありがとう
ーーーーー引用ーーーーー
全微分ってどういうことですか? * まず 1変数の場合からです。(その1) * まず 1変数の場合からです。(その2) * 全微分可能性って何? * 教科書の全微分可能性の定義が理解できないんですが? * 局所座標系だ * 全微分ってこれです Katsumi Matsuda 平成12年4月25日
ーーーーー引用終ーーーーー
No.1
- 回答日時:
たしかにそうだね。
微小Δx,Δyのとき△y/△x=dy/dxとして考えるもんね。
じゃあこう考えたらどう?
dy/dxは△y/△xの近似値(ただし△xが十分に小さいとき)。
定義とは全くそれてしまっているが、おおざっぱにいうとこういう意味になる。近似値と実在値はちがいます。
△y/△xは実在値に相当し、dy/dxは近似値に相当する。
ちなみに物理では近似を使う傾向があるのでdy/dxを△y/△xと書いたりします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 【全微分について】 z=f(x,y) の全微分は df=(∂f/∂x)dx+(∂f/∂y)dy と表 1 2023/02/25 05:49
- 数学 全微分について質問です。 z=f(x,y)のとき df=(∂f/∂x)dx+(∂f/∂y)dy ∂f 5 2023/02/24 05:46
- 数学 微分(全微分)についての質問です。 2 2022/04/07 17:08
- 数学 dl と 、 Δl はどのように違いますか? 2 2022/11/30 15:48
- 数学 前にも質問したものでx^3+y^3=1を陰関数を使って、点(1、0)、接線の方程式を求めなさいという 1 2023/07/08 12:17
- 数学 「急募!」数学 微分方程式 dy/dx=y+x*y^3 ・・・(1) 但しy(0)=±1をExcel 2 2022/07/20 21:58
- 数学 (1+x^2)y'=1 の微分で教えて下さい 2 2022/08/30 10:23
- 数学 テイラー展開について r↑(x+dx,y+dy,f(x+dx,y+dy))を点(x,y,f(x,y) 4 2023/03/08 01:06
- 数学 写真の赤丸のようになぜ、(d²y/dx²)=(d/dx)(dy/dx)と変形できるのですか? それと 5 2022/10/29 18:47
- 物理学 線積分 1 2023/06/19 14:37
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
至急です(数学) 解答に 辺OCは...
-
曲線y=xの3乗+3xの2乗-2につい...
-
常にf’’(x)>0とf’'(x)=0...
-
放物線と共通接線
-
判別式
-
Excelでこの直線と曲線が離れ出...
-
数2の関数の接線の問題なのです...
-
にゃんこ先生の自作問題、楕円...
-
数学の問題の解答を教えてくだ...
-
数学得意な方に質問です。写真...
-
曲線と点の最短距離の出し方
-
楕円上の点と外部の点の距離
-
理解しがたい部分があります。...
-
傾きが同じって
-
【数学〜微分〜】 この問題の指...
-
Tangent lineを求める問題です...
-
【数学】 接点が異なれば、接線...
-
数IIIの放物線の問題です
-
曲線の下に凸または上に凸の区...
-
メール文章で直線の描き方について
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
Excelでこの直線と曲線が離れ出...
-
常にf’’(x)>0とf’'(x)=0...
-
曲線と点の最短距離の出し方
-
【数学】 接点が異なれば、接線...
-
「接する」の厳密な定義とは?
-
理解しがたい部分があります。...
-
数学 2次以上の関数のある一点...
-
3次関数と、直線が変曲点で接す...
-
傾きが同じ?
-
数IIです。
-
△y/△xとdy/dxについて再考
-
高校数学での接線についての質...
-
エクセル2007曲線の接線と傾き...
-
曲率(と捩率)の符号は、数式...
-
行列・行列式が考えられたわけ...
-
a,bは定数で、ab>0とする。放物...
-
三次関数 点A(2、a)を通って、...
-
点(1,14)から曲線y=3x2乗に引...
-
xについて微分するとは
-
円の接線はなぜ接点を通る半径...
おすすめ情報