
http://maya.phys.kyushu-u.ac.jp/~knomura/educati …
ニュートン法は2次収束すると習ったのですが
これはどんな関数でも2次収束すると言って
良いのでしょうか?
実際にプログラムを組んでみて
y=X^4+7X^3-27X^2+29X-10
の収束性について調べてみました。
この関数は1で重解をもつので初期点を3にして
試してみた所1次収束性は確認できたのですが
2次収束性は確認できませんでした。
これはプログラム上のミスでしょうか?
それともニュートン法の2次収束性は全ての関数には
いえないものなのでしょうか?
No.1ベストアンサー
- 回答日時:
>これはプログラム上のミスでしょうか?
>それともニュートン法の2次収束性は全ての関数
>にはいえないものなのでしょうか?
ミスではなくこれがまさにニュートン法の特徴です。ニュートン法は関数の性質が事前によく分かっている場合やよい初期値を与えた場合には収束が速くて便利ですが、関数が単調でなくて変曲点を持つような場合には収束しないこともあります。
No.2
- 回答日時:
x^4 + 7 x^3 - 27 x^2 + 29 x - 10
=(x+10)(x-1)^3
もし、x=1に収束していれば3重根なので1次収束になるのではないでしょうか
参考URL:http://maya.phys.kyushu-u.ac.jp/~knomura/educati …
この回答への補足
では
y=X^3+8X^2-19X+10
=(X+10)(X-1)^2
のような場合でも2次収束性は出ないで
1次収束になってしまうという事でいいのですか?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 関数列の収束について 次の問題を教えて欲しいです。 区間[0,1) の関数列fnと関数f(x)につい 1 2022/06/01 08:33
- 数学 f(θ)=sinθ/cosθに関して、 f(θ)=sinθ/cosθをθ=π/2のまわりでローラン展 4 2022/09/17 19:11
- 物理学 対流による物体の温度変化について 1 2022/12/06 13:17
- 数学 関数項級数について一様収束するかどうか判定をお願いしたいです。 以下の式のΣ[n=1→∞]についてで 1 2023/01/26 16:32
- 数学 微分可能 連続 わからない 3 2022/06/22 17:22
- 数学 そこにいる確率。 5 2023/05/30 13:37
- 数学 ①lim x→∞で1/xだった場合は発散しないため限りなく0に近い解が求められるのでしょうか? 例え 7 2022/05/16 19:27
- 数学 画像において、なぜk>1では絶対収束① k≦1でば条件収束②または発散する(正項級数an>0 ならば 15 2022/08/27 19:43
- 物理学 量子力学で粒子の位置について。 2 2023/06/11 11:35
- 数学 微積の数学の質問です。 発散、収束とはなんですか? 0.0000000001/0.02 収束0.04 4 2023/07/03 14:10
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報