
A 回答 (5件)
- 最新から表示
- 回答順に表示
No.5
- 回答日時:
ベクトルを、何倍かする、ということならできますが、ベクトルをベクトル倍することはできません。
> →OA・→OC
これは、内積、と言います。
これをかけ算と言っているのは、要は教科書も何も読んでないということでしょう。
あなたが人類数千年の歴史上トップクラスの数学者であれば、それでもどうにかなるのかもしれませんが、もし私程度の凡人でしか無いのであれば、教科書参考書等をしっかり読まないことにはどうにもならないはずです。
教科書を読んでも判らない、というのであれば、易しい参考書を探して下さい。
坂田アキラとか、マセマのはじめからはじめるとか。
中学数学はできていたでしょうか。
数学は積み重ねの学問ですから、下がグラグラしていると、上に積み重ねることは困難です。
ただし、ベクトルの基礎の辺りは、誰にとっても初めて見ることですから、ちゃんとやれば基礎レベルはクリアできるようになるはずですので、そのつもりでやってみると良いと思います。
ちなみに、
→OA×→OC
というのもあります。
これは外積、と言って、高校では習いません。
もう少し解説すると、
> →OC=a→OA+b→OB
右辺はなにやら式の形になっていますが、しかし、それは左辺と同じベクトルである、ということですよね。
従って、左辺の内積が取れるなら、右辺も内積が取れます。
さて、実は問題はここからで。
右辺全体に内積が取れるのは、それはそうなんですが、しかし、
(→D+→E)・→F = →D・→F +→E・→F
が成り立つのか、が問題でしょう。分配法則が成り立つのか。
よくよく考えてみれば、ただのかけ算では無い、こんな得体の知れない物に、分配法則がなり立つのか。
証明の所はお任せしますが、少なくとも結論の所は、教科書参考書等で調べておく必要があります。
> 両辺に→OA掛けて
> →OA・→OC=a→|OA|^2+b→OA・→OB
両辺とも→OAとの内積を取れば、a→|OA|^2が生じる、というところは、本当に理解できているのでしょうか。
丁寧に書くと、
→OA・→OC=(a→OA+b→OB)・→OA
=a→OA・→OA+b→OB・→OA
=a|→OA|^2+b→OA・→OB
ですが。
No.4
- 回答日時:
両辺が、=(等号)で結ばれているということは、左辺と右辺は「同じモノ」ということです。
「同じモノ」なんですから、同じ操作(例えば、両辺にあるベクトルを内積するなど)をしても、同じままです。
中学1年で、「移項」を習ったとき、教科書に、釣り合ってる天秤の絵が出てきて、
釣り合ってる天秤の両側に同じ重りを追加しても、天秤は釣りあったまま。
みたいな説明をされたと思います。
中学1年生に説明することを考えると、仕方がない面はあるんですが、本当は、この説明はおかしいんですね。
この説明だと、両辺から同じ数を引いた場合は同じままなのか?、両辺に同じ数をかけた場合は?、両辺に同じ数をべき乗した場合は?、、両辺に同じベクトルを内積した場合は?
と全ての操作について、いちいち確かめないといけません。
「等号」というのは、天秤のように、左に置いてあるモノと、右に置いてある(別の)モノが、「釣りあっている」という意味ではなくて、
左辺と右辺は(記述の仕方が違うだけで)、「同じモノ」であるという意味なんです。
たとえば、
1/10=0.1
という式があったとき、1/10という表記と、0.1という表記は、全く同じ1つの数を表しているという意味なんです。
つまり、同じものを2通りの書き方で書きあらせるということです。
「同じモノ」なんですから、両辺に任意の同じ操作をしても、同じままです。
No.2
- 回答日時:
C=aA+bB (A, B, C はベクトル。
a, b はスカラー) とすると全体に ドット積(内積)を
A・C = A・(aA + bB)
と掛けることができます(内積の定義から明らか)。
内積には分配則が成り立ち、
ベクトルとスカラーの積には交換則が成り立ち、
スカラーとベクトルの積と内積との間には結合則 (aA)・B=a(A・B) も成り立つので
A・C = A・aA + A・bB = aA・A + bA・B = a(A・A) + b(A・B)
(A・A) = |A|^2 と定義すると
A・C = a|A|^2 + b(A・B)
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
かけ算、割り算の移項
-
あなたが勤務する商店で、新商...
-
高校1年の数学です! この青い...
-
分数の掛け算・割り算について...
-
フーリエ変換について
-
元から円への直し方
-
計算式を解説して下さい。
-
シグマ計算
-
パーセントの計算
-
複素数の計算
-
エルミート演算子について
-
伸び率のマイナス数値からのパ...
-
お医者さんプレイのやり方
-
3分の2時間を 分に直すにはどー...
-
ICOCAアプリで現金チャージした...
-
(1×6分の1)+(2×6分の1)+...
-
小三算数です。 0➗4=0 4➗0=0...
-
ジモティで商品を取りに来ても...
-
経時変化とは、どのような意味...
-
15000円の5%オフ の計算の仕方...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
かけ算、割り算の移項
-
シグマ計算
-
分数の掛け算・割り算について...
-
パーセントの計算
-
あなたが勤務する商店で、新商...
-
?÷5/8=4の答え、解き方を教えて...
-
x人の20%の人数の求め方を教え...
-
この複素数のn乗根の計算の問題...
-
比を簡単にするのに0.7対0.2は...
-
高校数学で、循環小数0.015(15...
-
高校1年の数学です! この青い...
-
Xの求め方
-
小学生算数の逆算について
-
両辺ともに0以上なので、2乗し...
-
Xについての一次方程式、ー3分...
-
乗数が小数点の場合、四則計算...
-
分数の分割
-
∫ ae^-ax dx
-
指数を単純化
-
なんで両辺に10をかけると8x+9y...
おすすめ情報