
No.3ベストアンサー
- 回答日時:
図形における合同の定義は、
「平行移動・回転・裏返しという3つの運動のみによって重なる2つの図形A、Bがあれば、このA、Bは合同である」
ということであったと思います。
三角形においては、
“3つの運動のみによって重なること”と
“三つの辺がすべて等しく、三つの角もすべて等しい”ということは同じ意味をもちます。つまり、三角形が合同であるためには三つの辺がすべて等しく、三つの角もすべて等しいことを示せばよいのです。
しかし、ご存知のとおり実際にはすべての辺とすべての角を調べる必要はありません。なぜなら、三つの辺がきまれば内角は一通りにしかならず、二つの辺とその間の角が決まれば残りの辺の長さも一通りで、一つの辺とその両側の角が決まれば残りの二辺も一通りに決まってしまうからです。
現在、数学の教科書に載っているような合同条件は本来の合同条件を分かりやすくかいたもので、定義ではありません。そもそも三角形には三つの辺と三つの角があり、それらにおける組み合わせをすべて考えて検証した結果、今の3つの合同条件が導き出されたのではないかということです。例えば三つの角がすべて等しい2つの三角形は合同にはなりません。それは必ずしも重なる三角形ではないからです。他にも二つの辺とその間でない角・・・というように考えていけば定義をみたさない三角形が存在することが分かりますので、結局定義をみたすものは3つしか存在しなかったということではないでしょうか。
この回答へのお礼
お礼日時:2005/02/03 16:16
丁寧なご説明、ありがとうございます。
納得することができました。
ちなみに、この合同条件を証明するためには三角関数(sinなどをつかったもの)をつかうのでしょうか…。
No.4
- 回答日時:
No.3です。
図形の合同という概念は、平面ユークリッド幾何での話なので三角関数とはあまり関係ありません。
三辺相等を例に挙げれば・・・
2つの異なる点A,Bをとり、A,Bをそれぞれ中心として円をかきます。このとき線分ABの長さよりも2つの円の半径の和が長くなるようにします。すると、線分ABの上下にひとつずつ円の交点ができますよね。それをC,Dとすれば線分ABを共有する2つの三角形ABC、ABDをつくることができます。ABの中点を中心にして三角形ABDを180度回転させれば2つの三角形は重なりますので、合同であるといえます。つまり三辺の長さを一定にすれば三角形は1通りに決まるというわけです。
No.1
- 回答日時:
なんかよさげなサイトを紹介しときます。
みてみれ。
大まかなイメージだけいうとするならば・・
点の自由度は平面状には縦と横の2つある。
三角形を構成する頂点の数は3つ。
だから、三角形を構成する自由度が6つあるってこと。
ところが合同である三角形の位置や方向は自由。
位置<2自由度、方向は1自由度
よって、6つの変数のうち3つを決定してやればよい。
3つの自由度のうちスケールを決める自由度はかならず必要。<辺の長さ>
あと辺の長さか角度かを選べる。
(辺の長さ、角度)⇒(3、0)、(2,1)、(1、2)
ということで合同の条件は三つ。
スケールを決定しないと相似の条件にしかならないんだな。
参考URL:http://www.asahi-net.or.jp/~tt9h-hskw/sugaku/tri …
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学Aについて質問です。 1. 正...
-
エクセルで文書の改訂記号を作...
-
三角形折りの卓上札に両面印刷...
-
三角錐と四面体
-
正八角形の三個の頂点を結んで...
-
空間ベクトル 大至急お願いします
-
「平面上に三角形OABがあり、OA...
-
正八角形で・・・・
-
四角形の重心の求め方の定義名
-
Wordで三角柱を作成したいので...
-
ヘロンの公式って、3辺が整数で...
-
(x+y)10乗の係数を教えて...
-
三角関数で分からない問題があ...
-
スマホでこの画像の4G左側にあ...
-
台形の対角線の求め方
-
製図の課題の出だしが分からず...
-
図形
-
高校教科書の問題
-
ベクトルの重心
-
底辺が共通な2つの三角形の角...
おすすめ情報