A 回答 (5件)
- 最新から表示
- 回答順に表示
No.5
- 回答日時:
> 取り出した後に、赤玉が60個以上入っている確率を求めよ
> ということでも別にかまいません。
取り出した後に赤玉が60個以上入っているというこなら、
赤玉を取り出す前に赤玉が61個以上入っていたの言い換えだから、
Prob[赤玉が61個以上|取り出した玉が赤]
= Σ[k=61..99] (1/99) (k/99) / Σ[k=1..99] (1/99) (k/99)
= Σ[k=61..99] k / Σ[k=1..99] k
= 1 - Σ[k=1..60] k / Σ[k=1..99] k
= 1 - { (1+60)60/2 } / { (1+99)99/2 }
= 104/165
≒ 0.630
約 63%
No.3
- 回答日時:
私はベイズで計算したら、0.642424242 になりました。
No.2様と同じ結果です。
1~99までの各事象は無情報一様分布と考えました。
以下は計算の一部です。
・事前確率は1/99で、全て同じです。
・各条件付き確率はN/100です。筆頭事象が生起しているときに赤が出る確率です。
・周辺確率は0.5になりました。そこから各事後確率を計算しています。
・そのうえで、N>60の事後確率の和を取りました。
事象(N個) 事前確率 条件付確率 前記の積 事後確率
1 0.01010101 0.01 0.00010101 0.00020202
2 0.01010101 0.02 0.00020202 0.00040404
3 0.01010101 0.03 0.00030303 0.00060606
4 0.01010101 0.04 0.00040404 0.00080808
5 0.01010101 0.05 0.00050505 0.00101010
6 0.01010101 0.06 0.00060606 0.00121212
7 0.01010101 0.07 0.00070707 0.00141414
・ ・
・ ・ 以下略
・ ・
・ ・
99
No.2
- 回答日時:
条件 P の下に事象 Q が起こる確率を Prob[Q|P] と書くことにする。
Prob[Q|真] を Prob[Q] と略記する。
条件付き確率の定義として Prob[Q|P] = Prob[Q∧P] / Prob[P] が言える。
Prob[赤玉が60個以上|取り出した玉が赤]
= Prob[赤玉が60個以上∧取り出した玉が赤] / Prob[取り出した玉が赤]
= Σ[k=60..99] Prob[赤玉がk個∧取り出した玉が赤] / Prob[取り出した玉が赤]
= Σ[k=60..99] Prob[赤玉がk個] Prob[取り出した玉が赤|赤玉がk個]
/ Σ[k=1..99] Prob[赤玉がk個] Prob[取り出した玉が赤|赤玉がk個],
Prob[赤玉がk個] = 1/99,
Prob[取り出した玉が赤|赤玉がk個] = k/99.
よって、
Prob[赤玉が60個以上|取り出した玉が赤]
= Σ[k=60..99] (1/99) (k/99) / Σ[k=1..99] (1/99) (k/99)
= Σ[k=60..99] k / Σ[k=1..99] k
= 1 - Σ[k=1..59] k / Σ[k=1..99] k
= 1 - { (1+59)59/2 } / { (1+99)99/2 }
= 106/165
≒ 0.642
だいたい 64% くらい。
No.1
- 回答日時:
普通の高校数学ではおそらく解けない問題だと思います。
ベイズの定理が必要だと思われます。
その上でいうと、40/99です。
ベイズの定理を用いて、
P(R≧60|)=P(|R≧60)P(R≧60)/P()という式が成り立ちます。
これを解いて、
(99-60+1)/99=40/99
したがって40/99です。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
家の中でのこだわりスペースはどこですか?
自分の家で快適に過ごすために工夫しているスペースはありますか? 例)ベランダでお茶を飲むためのカフェテーブル ゲーミングに特化したこだわりのPCスペース
-
一回も披露したことのない豆知識
あなたの「一回も披露したことのない豆知識」を教えてください。 「そうなんだね」と「確かに披露する場所ないね」で評価します。
-
CDの保有枚数を教えてください
ひとむかし前はCDを買ったり借りたりが主流でしたが、サブスクで簡単に音楽が聴ける今、CDを手に取ることも減ってきたかと思います。皆さんは2024年現在、何枚くらいCDをお持ちですか?
-
自分のセンスや笑いの好みに影響を受けた作品を教えて
子どもの頃に読んだ漫画などが その後の笑いの好みや自分自身のユーモアのセンスに影響することがあると思いますが、 「この作品に影響受けてるな~!」というものがあれば教えてください。
-
ギリギリ行けるお一人様のライン
おひとり様需要が増えているというニュースも耳にしますが、 あなたが「ギリギリ一人でも行ける!」という場所や行為を教えてください
-
確率の問題で質問です。 サイコロを3回続けて投げる時、出る目の最大値が4である確率について、一発の計
数学
-
確率の問題Ⅱ
数学
-
確率の問題 数学と実生活と
数学
-
-
4
数学の約束記号の問題について教えてください。
数学
-
5
2の810乗はいくつですか?
数学
-
6
こうなる理由が分かりません
数学
-
7
下の画像の中の三角形は正方形だ、と友達が言っていたのですが、その根拠のようなものはありますか? 二等
数学
-
8
a, bがa>0, b>0,1/a+2/b=3を満たして変化するとき, (1) abの最小値を求めよ
数学
-
9
写真の様な解き方はおかしいですか? 何故おかしいのかも教えてくれると助かりますm(_ _)m
数学
-
10
ちょっとむずかしいね?
数学
-
11
4で割った余りが3でないときは図のように書いてもいいんですか?できればその根拠となるサイトを載せてい
数学
-
12
円1:x²+y²=4と円2:(x-2)²+y²=1の交点を求めようと思って円1の方程式を変形してy²
数学
-
13
以下数学の問題があります。解法はではなくどのようにして解法を思いつくに至ったかの経緯を教えて下さい。
数学
-
14
1の100乗、2の100乗、~100の100乗をそれぞれ12で割った余りのうちことなるものは何通りか
数学
-
15
簡単なはずですが教えてください。
数学
-
16
中二数学について質問です。 整数の性質のところで、nを整数とすると2の倍数は2n、3の倍数は3nなど
数学
-
17
BINGが間違えた、とっても簡単な算数の問題です、これを見て、どう思われますか。
数学
-
18
n 個のサイコロを同時に振る。 ただし、nは正の整数とする。 出た目の数の積が6の倍数となる確率を求
数学
-
19
1+2+3+…=?
数学
-
20
数学 なぜn²が4の倍数だとわかるのか
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
素数発見の新記録 実用面で何か...
-
600wで3分ってことは500wで何分...
-
三角関数
-
こうこうすうがくについてです...
-
aを正の定数とする
-
高校数学についてです。 (1,-1,...
-
大学数学の問題です |r=(x,y,z)...
-
解析学で使う波面集合と言うの...
-
交差について良く分からないの...
-
両側パラメトリック(twosided p...
-
和の公式
-
こちらの2024.08.20 18:17と202...
-
10マイル とは、何㎞ 何メート...
-
すごく変な質問なのですが、分...
-
整式f(x)が等式x^2f'(x) - f(x)...
-
cosphere特にcosphere bundleに...
-
60進法?について 最近、未経験...
-
時間の計算について 37時間23分...
-
少数を分数に直す時に素早くで...
-
高校数学についてです。 積分の...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
2024.8.20 18:17にした質問の、...
-
こちらの2024.08.20 18:17と202...
-
2024.10.13 05:04にした質問の2...
-
2024.5.8 08:24の質問の 2024.5...
-
こちらの2024.08.20 18:17と202...
-
積分について
-
2024.10.8 12:12に質問した 202...
-
2024.5.8 08:24にした質問の 20...
-
この問題のときかたをおしえて...
-
2+A=10 3+B=12 A+B=19 これで正...
-
109x-29y=1 の整数解の見つけ方...
-
時計の長針と短針が重なる回数...
-
x>0,y>0→x^x+y^y≧x^y+y^x?
-
2024.8.20 18:17にした質問の20...
-
10のn乗-1でn=1から15,はなぜ17...
-
ミラーか線か
-
複素数平面
-
共テ模試で「切片」と書かれて...
-
数Ⅲの問題が分かりません
-
方程式 九州大学過去問
おすすめ情報
回答をいただいた後でいうのもなんですが、60/99ではなく、39/99=13/33となるのではないかと思います。
申し訳ありませんが、更に補足です。玉を取り出す前に、袋の中に、赤玉が60個以上入っていた確率ということです。が、取り出した後に、赤玉が60個以上入っている確率を求めよ、ということでも別にかまいません。