質問投稿でgooポイントが当たるキャンペーン実施中!!>>

電圧の単位であるボルト(V)をエネルギー単位であるエレクトロンボルト(eV)にしたいのです。どうしたらいいでしょうか??教えて下さい。お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

 「理化学辞典 第5版」(岩波)によると,eV(電子ボルト)とは,『電気素量 e の電荷をもつ粒子が真空中で電位差1V の2点間で加速されるときに得るエネルギー』とあります。



 例えば,電気素量 e の電荷をもつ粒子であれば,1 V で 1 eV に対応しますが,電気素量 2e を持つ粒子であれば,1 V で 2 eV になります。

 つまり,電位差(V)が決っただけではエネルギ-は決りませんので,他に条件が無い限りは,ご質問の様な V を eV に変換する事はできないと思います。

 いかがでしょうか。
    • good
    • 0

> 電圧の単位であるボルト(V)をエネルギー単位であるエレクトロンボルト(eV)にしたいのです。


ご自身でおっしゃっている通り、Vは電圧の単位、eVはエネルギーの単位ですからVをeVに変換することはできません。何か勘違いをされているのでは?
    • good
    • 2

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qエクセルで片対数グラフを作る

エクセルで片対数グラフを作る方法を詳しく教えてください。お願いします。

Aベストアンサー

グラフの数値軸のところで右クリックして
軸の書式設定(O)→目盛(タブ名)

対数目盛を表示する(L)
にチェックを入れてください。

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Qフランク・ヘルツの実験

フランク・ヘルツの実験をおこないました。

実験データを加速電圧を横軸に、プレート電流を縦軸にとりグラフをおこすと極大値を4つ持つ曲線となりました。

理論には加速電圧が励起エネルギー毎に極大値がでるあとありましたが、それは同じエネルギー準位のところで、原子が励起されるということを表していると考えていいのですか??

なぜ毎回同じ準位で励起がおこるのでしょうか?

Aベストアンサー

 #2です。
 補足を拝見しました。

>とても不思議なのですが、1・2・3と定常状態があり、エネルギーもこの順番に大きいとします。それで3の状態で励起がおこることがあると思うのですが、なぜ1・2という状態では励起しなかったのでしょう…励起に十分なエネルギーがあるのに…

 まだ用語の使い方が変です。
 基底状態から励起された状態のエネルギ準位を低いほうからE1,E2,E3、・・・と数えていったときに、何故E1ばかりに遷移しE2やE3しないのか、と質問したほうがいいですよ。
 その疑問はもっともで、E2やE3にも遷移はあったと思います。ただその遷移の回数がE1に比べると圧倒的に少なかったので、グラフに現れなかったということだと思います(E1へ遷移しやすいのは分かりますよね。遷移確率はエネルギ差が小さいほど大きくなりますので)。その場合、グラフの変化だけでE2やE3への遷移がなかったと結論付けるのは早計です。
 もし、E2やE3への遷移があれば、発光のスペクトラムを解析すればそれに対応した波長が検出されるはずですので、それによって他のエネルギ状態への遷移を検証すると良いと思います。


>もちろん波長は計算しました。すると70nmと可視領域を外れているのです。
>これは電流の極大値とリングの出現は少し遅れていることと関係があるのではと考えています。しかし1回目では発光してないことによって考えはかなり難しい…

 この理由については分かりません。
 実験の内容(ガスの種類、実験装置の構成など)や極大値での加速電圧の間隔などを詳しく書いて、他の詳しい方が回答してくれるのを待ったほうがよいかもしれません。

 #2です。
 補足を拝見しました。

>とても不思議なのですが、1・2・3と定常状態があり、エネルギーもこの順番に大きいとします。それで3の状態で励起がおこることがあると思うのですが、なぜ1・2という状態では励起しなかったのでしょう…励起に十分なエネルギーがあるのに…

 まだ用語の使い方が変です。
 基底状態から励起された状態のエネルギ準位を低いほうからE1,E2,E3、・・・と数えていったときに、何故E1ばかりに遷移しE2やE3しないのか、と質問したほうがいいですよ。
 その疑問...続きを読む

Q真性キャリア密度niの計算に関して

半導体工学のテキストに載っている真性キャリア密度の計算ですが
下式が有名ですが、この式と下記のパラメータを使って計算をすると、テキストに書いてある値(1.5×10^10 /cm^3または、1.45×10^10 /cm^3)と違っています。

式 ni=√(Nc*Nv)*exp(-Eg*q/2kT)
ni=√(2.8×10^19×1.02×10^19)×exp(-1.12×1.6×10^-19/2×1.38×10^-23×300)

パラメータ
Nc=2.8×10^19
Nv=1.02×10^19
q=1.6×10^-19
Eg=1.12
k=1.38×10^-23
T=300

計算過程は間違いないと思いますが、1.5×10^10 /cm^3または、1.45×10^10 /cm^3の値になりますでしょうか?

Aベストアンサー

昨日から、誰か回答してくれないかなぁと待っていましたが、なかなか現れないので、私が書くことにしました。
しかし、ずいぶん昔のことなので、自信がありませんので、違っているかもしれません。
たぶん次のところではないかと思うんですが。

>式 ni=√(Nc*Nv)*exp(-Eg*q/2kT)

上式は、PN積のni^2が一定となると言うことから、平方根をとっているのではないかと推測します。
この式のNcとNvがありますが、これは伝導帯中の電子の密度と価電子帯中のホール密度の定数部分ですよね。

ですが、
>テキストに書いてある値(1.5×10^10 /cm^3または、1.45×10^10 /cm^3)

この値は、伝道帯中の自由電子密度だけの値ではないでしょうか?
そう考えて、計算してみると、質問にあるパラメーターを用いて計算しても、1.5×10^10 /cm^3程度の値になります。

計算式は、
ni=Nc×exp(-Eg*q/2*kT)
です。

蛇足ですが、常温(T=300[K])のときのkTの値は、[eV]で表すと、約0.026[eV]となりますので、大雑把に計算するときはこの方が便利です。
ni=Nc×exp(-Eg/2*0.026)

昨日から、誰か回答してくれないかなぁと待っていましたが、なかなか現れないので、私が書くことにしました。
しかし、ずいぶん昔のことなので、自信がありませんので、違っているかもしれません。
たぶん次のところではないかと思うんですが。

>式 ni=√(Nc*Nv)*exp(-Eg*q/2kT)

上式は、PN積のni^2が一定となると言うことから、平方根をとっているのではないかと推測します。
この式のNcとNvがありますが、これは伝導帯中の電子の密度と価電子帯中のホール密度の定数部分ですよね。

ですが、
>テキ...続きを読む

Q参照電極の換算。

参照電極の換算。
非水溶系で使用するAg/Ag+の参照電極をSHE基準やSCE基準へ換算するには、どのように行えばいいのですか?
参照電極の電位の相互関係を教えてください。

Aベストアンサー

http://old.iupac.org/publications/pac/1986/pdf/5807x0955.pdf
でも読んでみるといいでしょう.
原理的には,その溶媒系でのAg/Ag+系なりの電位が真空準位の下どのくらいになるかを見積もればいいのです.
通常のSHEに替えて,有機溶媒を使ったSHEというものを考えることはできます.その電位については水系のSHE同様の議論を行った例はいくつかあって,上記文献にも出てきます.
とはいえ,SHEの場合でさえ 4.44 eV くらいに話が落ち着くのに,喧喧諤諤の議論が延々と続くことになりましたから,見積もりに必要なパラメータの推定はそれだけ困難だとも言えますけどね.
あとは,そのSHEもどきとの電位差がどうなっているかで Ag/Ag+ 系の電位を考えていくわけですが,最初から Ag/Ag+ 系で同じ議論をやってももちろんかまいません.

Qlogとln

logとln
logとlnの違いは何ですか??
底が10かeかということでいいのでしょうか?
大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??
解説お願いします!!

Aベストアンサー

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場合があります。

私の大学時代と仕事の経験から言いますと・・・

【eを用いるケース】
・数学全般(log と書きます)
・電子回路の信号遅延の計算(ln と書く人が多いです)
・放射能、および、放射性物質の減衰(log とも ln とも書きます。ただし、eではなく2を使うこともあります。)

【10を用いるケース】(log または log10 と書きます)
・一般に、実験データや工業のデータを片対数や両対数の方眼紙でまとめるとき(挙げると切りがないほど例が多い)
・pH(水溶液の水素イオン指数・・・酸性・中性・アルカリ性)
・デシベル(回路のゲイン、音圧レベル、画面のちらつきなど)

ご参考になれば。

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場...続きを読む

Q面心立方と体心立方の逆格子

固体物理の勉強をしています。
体心立方構造の(hkl)面の逆格子点 g*=ha* + kb* + lc*を逆空間で描くと面心立方構造になるらしいのですが、理由がわかりません。
分かる方いましたら、教えてください。お願いします。

Aベストアンサー

単純な計算だけで分かります。
体心立方格子のユニットベクトルは
a1=(-a/2,a/2,a/2), a2=(a/2,-a/2,a/2), a3=(a/2,a/2,-a/2)
です。aは格子定数です。
逆格子ベクトルは b1=2π(a2x a3)/(a1(a2xa3)) などですから、単純に計算すれば
b1=2π/a(0,1,1) , b2=2π/a(1,0,1), b3=2π/a(1,1,0)
となり、これは面心立方格子のユニットベクトルです。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング