x^3-3axy+y^3=0 (a>0) で、陰関数yの極値を求めたいのですがよく分かりません。
やり方を詳しく教えてください、よろしくお願いします。

A 回答 (1件)

 


  当然のことですが、これはxとyの関数で、xに対しyの値が変化し、yの極値を求めるということですね。
 
  dy/dxという関数を計算し、これを0とした時が、yの極値です。ただ、上の極値か、下の極値からは、これだけでは分かりませんが、それは質問に入っていません。提示の式全体を、xで微分します。
 
  3x^2-3ay-3ax(dy/dx)+3y^2(dy/dx)= 0
  (-3ax+3y^2)(dy/dx)= 3ay-3x^2
 
  ここまではよいでしょうか。これから
 
  dy/dx= 3(ay-x^2)/3(y^2-ax) =(ay-x^2)/(y^2-ax)= 0
 
  条件 y^2-ax not = 0 (not = は、「=でない」です)
  ay-x^2= 0 → y=x^2/a
  これを、最初の式に代入します
 
  x^3-3ax(x^2/a)+(x^2/a)^3 = 0
  -2x^3+x^6/a^3 = 0
  x^3 = X として代入すると -2X+X^2/a^3 = X(X/a^3 -2) = 0
  よって X=0 または X=2a^3
  この時 x=0 または x=a√/3/(2)=a(2^(1/3))
  
  y=x^2/a でしたから、y=0 または y=a(2^(2/3))
 
  条件は、y^2-ax not = 0 でした。
  x=0 y=0 の解は、この条件を満たしません。0になるからです。
  もう一つの解は
  a^2(2^(4/3))-a^2 (2^(2/3)) で
  これが0になる時は、a=0 ですが、これはa>0から除外されます。
 
  従って、回答は
  x=a(2^(1/3)) で、y=a(2^(2/3)) です。
 
  ちょっと下手な解き方かも知れません。
  考え方、解き方、実際の解く手順を上に詳しく記しました。
  考え方や解き方で分からない部分があれば、尋ねてください。
 
  また、途中で計算を間違えていることがあるかも知れません。それは、自分で計算してみて、答えを求めてみて、確認してください。解き方の質問ですから、これでよいと思います。
 
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Qx+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

クリックありがとうございます(∩´∀`)∩

 ★x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

この問題について説明をお願いします。

Aベストアンサー

おおざっぱな説明になりますが、左の式を
z=-x-y
として、それを右の式のzに代入します。
それを展開してまとめると
x^2-2xy+y^2=0
という式になります。
あとはこれを因数分解すれば
(x-y)^2=0
となるので、x=yという答えがでます。
与えられた条件がほかになければこれでいいはずです。

Q(1)半径rの円x^2+y^2=r^2と直線3x+y+10=0が共有点

(1)半径rの円x^2+y^2=r^2と直線3x+y+10=0が共有点をもつとき、rの値の範囲を求めなさい。
(2)円x^2+y^2=18と直線y=x+mが共有点をもつとき、定数mの値の範囲を求めなさい。
(3)半径rの円x^2+y^2=r^2と直線4x-y+17=0が異なる2点で交わるとき、rの値の範囲を求めなさい。
(4)円x^2+y^2=5と直線y=3x+mが接するとき、定数mの値の範囲を求めなさい。
(5)半径rの円x^2+y^2=r^2と直線x-3y-10=0が共有点を持たないとき、rの値の範囲を求めなさい。

解き方含め教えてください!!
お願いします。

Aベストアンサー

(1)
共有点を持つ、つまり実数解をもつということです。
実数解をもつということは、判別式DがD≧0となればよいのは分かりますね?
さて、何と何が実数解をもつかというと、x^2+y^2=r^2と3x+y+10=0ですね。
3x+y+10=0をy=-3x-10と変形して、これをx^2+y^2=r^2に代入して、xの2次方程式にしてD≧0を計算すればいいわけです。

(2)
同様に考えましょう。
y=x+mをx^2+y^2=18に代入してxの2次方程式にして、D≧0を計算すればmの値の範囲が分かるはずです。

(3)
異なる2点で交わる。つまり重解を持たずに実数解をもつ場合です。このとき判別式DはD>0となります。
他の考え方は一緒です。
4x-y+17=0を変形してx^2+y^2=r^2に代入し、その2次方程式の判別式DをD>0として計算するだけです。

(4)
接するとき、つまり重解をもつ時です。この時判別式DはD=0となります。

(5)
共有点を持たないときは、実数解をもたないときになります。
D<0ということです。


長くなりましたが、判別式の使い方さえ把握していれば全部同じ考え方で解ける基本問題ですね。

(1)
共有点を持つ、つまり実数解をもつということです。
実数解をもつということは、判別式DがD≧0となればよいのは分かりますね?
さて、何と何が実数解をもつかというと、x^2+y^2=r^2と3x+y+10=0ですね。
3x+y+10=0をy=-3x-10と変形して、これをx^2+y^2=r^2に代入して、xの2次方程式にしてD≧0を計算すればいいわけです。

(2)
同様に考えましょう。
y=x+mをx^2+y^2=18に代入してxの2次方程式にして、D≧0を計算すればmの値の範囲が分かるはずです。

(3)
異なる2点で交わる。つまり重解を持たずに実数解をもつ...続きを読む

Q線形です (1)を x+3y-2z=0 x-2y+4z=0 x^2+y^2+z^2=1をもちいて 答

線形です
(1)を
x+3y-2z=0
x-2y+4z=0
x^2+y^2+z^2=1をもちいて
答えが+-の答えになりました
(2)では外せきが8,-6,-5となり
おおきさの5ルート5で割ると
+-の答えにはなりませんでした
どちらが正しいのでしょうか?

Aベストアンサー

外積からでてきた単位べクトルは、外積の定義から、ベクトルa、bに垂直ですよね。
だからそれと正反対のベクトルも、ベクトルa、bに垂直な単位ベクトルだから、これも答えに入れれば
よいのです。つまり外積から出した単位ベクトルの各成分に(-1)をかけた成分のベクトルも答えに
なります。そしてこうして出した2つのベクトルは、先に内積で出した2つのベクトルと一致します。

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

Qx+y+z=3 x^2+y^2+z^2=9のとき、4xyの最大値 最

x+y+z=3 x^2+y^2+z^2=9のとき、4xyの最大値 最小値はいくらになりますか x、y、zは実数

Aベストアンサー

言いたくはないけど、何でもかんでも微分と言うのはやめようよ。

いずれにしても、zは不要になる。

x+y=a、xy=bとすると、実数条件から a^2-4b≧0 ‥‥(1)
とすると、条件は a+z=3 x^2+y^2+z^2=(x+y)^2-2xy+z^2=a^2-2b+z^2=9 からzを消すと b=a^2-3a ‥‥(2)
(1)と(2)から、0≦a≦4 ‥‥(3) 4xy=4b=4(a^2-3a)=4(a-3/2)^2-9 これはaの2次関数だから (3)の範囲で考えると -9≦4xy≦16。
但し、最大値と最小値を与えるxとyの値は?


人気Q&Aランキング

おすすめ情報