今だけ人気マンガ100円レンタル特集♪

バレリングの意味を教えてください。

A 回答 (2件)

 こちらこそお礼有難うございました。



 鋳造物を作製する際のことで、凹ませて、予めバレリングしておいて......ということですと、参考になるか、あるいは当たっているかどうかには自信がありませんが、補足させて頂きます。

 まず、このような工程で思いつくとしたら、よく使われるのが「バレル研磨」、これはドラム(バレル)の中に鋳上がった製品部品やプレスで打ち抜いたばかりの製品部品をコランダムなどといった硬い研磨材と一緒に入れてガラガラと回転させ、鋳物やプレスで生じたバリなどを取り除き面全体を綺麗にするといった加工方法です。
 この場合、わが国では習慣的にバレル研磨といい、バレリングとは言いませんが、良く似たものとして製品部品に強い圧力で砂を吹きつける研磨方法がありますが、この場合はホーニング加工と呼んでいますから、バレル研磨もあるいはバレリングと呼ぶのかもしれません。

 もうひとつは、筒状に加工する....とか、円筒形にする、銃身を加工する....といった加工工程をバレリングと呼ぶことです。さて、なにかヒントになりますでしょうか。
    • good
    • 0
この回答へのお礼

janvierさん、大変参考になりました。
どうやら円筒形に加工する意味で使われていたのだろうと思います。
貴重なお時間を有難うございました。

お礼日時:2007/08/06 12:01

 普通 barreling といえば、英語では「樽に詰めること」を言いますが、米口語ではなぜかクルマをぶっ飛ばすといった意味もあります。



 このようなご質問の場合は、出来たら単語が使われている前後の文章だとか、使われている分野なども書いて下さい。それによって回答する意味も変わってきますから。
    • good
    • 0
この回答へのお礼

janvierさん、有難うございました。
鋳造物を作製する際に、「凹ませて、予めバレリングしておいて‥」とあったのです。
大変有難うございました。

お礼日時:2007/08/05 16:40

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qレイノルズ数の具体的な値について

円管内流れにおける臨界レイノルズ数について教えてください。
調べても2000~4000などとあいまいにしか出てきません。。
できるだけ具体的な値を知りたいです!!

あと、なぜ臨界レイノルズ数の値ってこんなにばらつきが生じるのでしょうか?その理由についても教えて頂けると嬉しいです。

Aベストアンサー

臨界レイノルズ数に幅があるのは、この数値が計算ではなく
実験によるものだからということなのでしょう。

レイノルズ自身は円管の臨界レイノルズ数は「2300」と
実験で求めたそうですが、後の研究者の実験ではバラつき、
必ずしも2300ではない、との見解がこの幅のある表現に
なってるらしいです。

円管で無く飛行機の翼の実験では、レイノルズ数を増大させた
時と減少させた時とでは観測される臨界レイノルズ数が違い、
「数域」と呼べる幅が出来るそうで、この幅は「履歴現象
(ヒステリシス)」と呼ばれるそうです。
また翼型によっては、臨界レイノルズ数域自体が観測されない
(レイノルズ数の違いがポーラーカーブに差となって現れない)
ものもあるそうです。

Q相当応力、相当塑性ひずみについて

SHELL(板)要素の構造解析を行なっております。その解析結果の出力に主応力面についての応力、塑性ひずみがあります。その結果から相当応力、相当塑性ひずみを計算したいのですがよろしくお願いします。
また相当応力、相当塑性ひずみの工学的意味についてもあまりよく分かりませんので分かりやすくお願いいたします。

Aベストアンサー

大学出てからだいぶ時間が経ったので,とんちんかんなこと言ってるかもしれません.

式は,難しいのと,教科書に載ってると思われるので,
書きません.(書けません)

相当応力や相当ひずみというのは,破壊とか強度を論じる
ときに登場するものです.
材料試験をして,その材料がどの程度もつのか調べるわけです.
もしもあなたの注目している現象がその試験と全く同じ条件での材料の破壊や強度を求めたいのなら,その材料試験の値をそのまま適用できます.
しかし,材料はいろいろなかたちに加工され姿を変えて使用されます.荷重のかかりかたもいろいろです.そのため,いわゆる3軸の応力状態となります.6つの面に垂直応力やせん断応力がかかります.これらの応力状態で材料が持つのか持たないのかを議論するときに,その応力状態は,材料試験をしたときの単純な状態(たとえば一軸引っ張りやねじり試験)に換算したらどうなのかをみつけるときに相当応力というのが出てきます.

1軸応力だけなら,100kgf/mm^2もつとしても,
ねじりも同時にかかっていたり,他の2軸にも力がかかっていると単純に材料試験の結果を適用できないわけです.

相当応力は,破壊のメカニズムによりいろいろな式が提案されているので,逆に言えばどのような材料にも適用できる決定打はありません.

ここまで書いたことは,もしかして,違う相当・・・と勘違いしているかもしれません.
その際はご容赦を.

大学出てからだいぶ時間が経ったので,とんちんかんなこと言ってるかもしれません.

式は,難しいのと,教科書に載ってると思われるので,
書きません.(書けません)

相当応力や相当ひずみというのは,破壊とか強度を論じる
ときに登場するものです.
材料試験をして,その材料がどの程度もつのか調べるわけです.
もしもあなたの注目している現象がその試験と全く同じ条件での材料の破壊や強度を求めたいのなら,その材料試験の値をそのまま適用できます.
しかし,材料はいろいろなかたちに加工され...続きを読む

Qブラジウスの式(管摩擦係数)

こんにちは。
流体力学についての質問です。

簡易的に管摩擦係数 f を求める場合に、
ブラジウスの式が使われる場合がありますが、
教科書によって
f=0.079*Re^(-0.25) と書いてあったり、
f=0.3164*Re^(-0.25) と書いてあったりするのですが、
これは、摩擦係数の考え方の違いなのでしょうか?

ちょうど4倍違うので、そうなのかなぁと勝手に思ったのですが。
なぜこのように違う表記があるのか、
そして、どういう考え方のもと両者が違うのかをどなたか教えてください。

Aベストアンサー

摩擦係数にはダルシーの摩擦係数Cdとファニングの摩擦係数Cfと
二種類あり、Cd=4Cfの関係があります。
その結果、摩擦係数としてファニングを用いるか、ダルシーを
用いるかによって、ブラジウスの式などの摩擦係数の整理式の
係数が4倍異なる、という結果になります。

論文などでは"ダルシーの"摩擦係数というように明確に記載が
ある場合もありますが、無い場合もありますので、摩擦損失と
管摩擦係数の関係式などを見ながら、どちらの摩擦計数が
用いられているか判定していく必要があります。
(それでもどうしても判断つかない場合もあります。)

詳細はそれぞれの教科書をよく読んでください。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q降伏点 又は 0.2%耐力とはなんですか?

降伏点 又は 0.2%耐力というものを教えて下さい。
SUSを使って圧力容器の設計をしようとして、許容引張応力とヤング率だけでいいと思っていましたが、どうも降伏点 又は 0.2%耐力というものも考慮しなければいけないと思ってきました。
どなたかご助言お願い致します。

Aベストアンサー

●二つの材料強度
 金属材料の機械的特性のうち、一般に強度と呼ばれるものには
 ・引張強度
 ・降伏強度
 この二つがあります。

 引張強度はその名のとおり、引張荷重を上げていくと切れてしまう破断強度です。
 いわば最終強度です。

●降伏強度とは
 さて、ある材料を用意し、引張荷重を徐々にかけていくと、荷重に比例して
 ひずみ(伸び)が増えていきます。
 ところが、引張強度に達する前に、荷重とひずみの関係が崩れ、
 荷重が増えないのに、ひずみだけ増えるようなポイントが現れます。
 これを降伏と呼びます。

 一般に設計を行う場合は、降伏強度に達することをもって「破壊」と考えます。
 降伏強度は引張強度より低く、さらに降伏強度を安全率で割って、
 許容応力度とします。大きい順に並べると以下のような感じです。

 引張強度>降伏強度>許容応力度

●0.2%ひずみ耐力
 普通鋼の場合は降伏点が明確に現れます。
 引張荷重を上げていくと、一時的にひずみだけが増えて荷重が抜けるポイントがあり
 その後、ひずみがどんどん増え、荷重が徐々に上がっていくようになります。

 ところが、材料によっては明確な降伏点がなく、なだらかに伸びが増えていき
 破断する材料もあります。鋼材料でもピアノ線などはこのような荷重-ひずみの
 関係になります。

 そこで、このような明確に降伏を示さない材料の場合、0.2%のひずみに達した強度を
 もって降伏点とすることにしています。

●二つの材料強度
 金属材料の機械的特性のうち、一般に強度と呼ばれるものには
 ・引張強度
 ・降伏強度
 この二つがあります。

 引張強度はその名のとおり、引張荷重を上げていくと切れてしまう破断強度です。
 いわば最終強度です。

●降伏強度とは
 さて、ある材料を用意し、引張荷重を徐々にかけていくと、荷重に比例して
 ひずみ(伸び)が増えていきます。
 ところが、引張強度に達する前に、荷重とひずみの関係が崩れ、
 荷重が増えないのに、ひずみだけ増えるようなポイントが現...続きを読む

Qヌセルト(ヌッセルト)数の経験式について

強制対流熱伝達(流体は空気)におけるヌセルト数を求める式を探しているのですが、なかなか見つかりません。
ヌセルト数は物体の形状や流れの状態によって式が違うようで、水平平板上の式は見つけたのですが、その他の形状(円管など)の式が見つかりません。
どなたか教えてください。
よろしくお願いします。

Aベストアンサー

>質問するのは初めてなもので返信遅れてしまいました
いえいえ、1週間以上(時には永久に)反応がないのことも多いので、当日は即返です。

【円管内流れのReとNuの定義】 [1]
円管内部の平均流速を Um [m/s] としたとき、Re数は次式で定義されます。
   Re ≡ ρ*Um*D/μ
ρ は流体の密度 [kg/m^3]、μ は粘性係数 [kg/s/m = N・s/m^2]、D は円管の内径 [m] です。
一方、円管のNuは
   Nu ≡ h*D/k
で定義されます。h は熱伝達係数 [W/m^2/K] 、k は流体の熱伝導率 [W/m/K] です。層流の場合、発達流れのNuは一定ですが、乱流では Reや Pr に依存します。

【円管内乱流のNu式】 [1]
発達流れに対する、滑らかな円管内乱流のNuにはいろいろな経験式があります。

   (1) Nu = 0.023*Re^(4/5)*Pr^n --- Colburnの式 [2]
   (2) Nu = 0.027*Re^(4/5)*Pr^(1/3)*( μ/μs )^0.14  --- Sieder and Tateの式 [2]
   (3) Nu = ( f/8 )*Re*Pr/[ 1.07 + 12.7*√( f/8 )* { Pr^(2.3) - 1 } ]  --- Petukhovの式
   (4) Nu = ( f/8 )*( Re - 1000 )*Pr/[ 1.07 + 12.7*√( f/8 )* { Pr^(2.3) - 1 } ]  --- Gnielinskiの式 [2]

(1)は流体の温度変化が比較的小さく、 0.7 ≦ Pr ≦ 160、10000 ≦ Re、10 ≦ L/D で成り立つ式です( L は管の長さ [m] )。n の値は、流体を加熱するときは n = 0.4、冷却するときは n = 0.3 です。この式は壁面温度一定の場合も、熱流束一定の場合にも使えます。空気の Pr は 0.7 程度なのでこの式が使えます。

(2)は流体の温度変化が大きく、流体の粘性が大きく変わる場合の式です。μ は流体の平均温度(入口温度と出口温度の和の半分)での粘性係数で、μs は壁面温度での流体の粘性係数になります。この式は壁面温度一定の場合も、熱流束一定の場合にも使えます。

式(1)、(2)は簡便ですが誤差が25%と大きいので、式(3)、(4)が提案されています(これらは誤差10%)。式(3)は0.5 ≦ Pr ≦2000、10000 ≦ Re ≦ 5×10^6、10 ≦ L/D で成り立つ式です。物性値は流体の平均温度(入口温度と出口温度の和の半分)での値を使います。

式(4)は式(3)より小さな Re での近似式で、0.5 ≦ Pr ≦2000、3000 ≦ Re ≦ 5×10^6、10 ≦ L/D で成り立ちます。物性値は流体の平均温度(入口温度と出口温度の和の半分)での値を使います。

式(3)、(4)に出てくる f は乱流での管摩擦係数で次式で表されます。
   f = 1/{ 0.790*ln( Re ) - 1.64 }^2
これは 3000 ≦ Re ≦ 5×10^6 での近似式です。
f と平均流速 Um、圧力勾配 dP/dx との関係は
   f*ρ*Um/( 2*D ) = -dP/dx
になります。

【断面が円形以外の場合】 [1]
管断面が円形以外の場合、上式の D (内直径)の代わりに、等価直径 Dh を使います。
   Dh ≡ 4*A/P
A は内部の断面積で、円形なら A = π*( D/2 )^2 = π*D^2/4、Pは内面の周囲長で、円形なら P = 2*π*( D/2 ) = π*D なので、円形なら Dh = D となります(こうなるように Dh の定義式は 4 がかかっている)。

[1] F.P.Incropera and D.P.DeWitt "Fundamentals of Heat and Mass Transfer" 5th edition, John Wily & Sons (2002), Chapter 8 (Internal Flow).
[2] 右URL(Excelファイル)の 77行目以降に式が出ている http://www-physics.lbl.gov/~gilg/DavidStuff/Pixel%20Mech/Pixel%20Cooling/vvc6f14lqd.xls

>質問するのは初めてなもので返信遅れてしまいました
いえいえ、1週間以上(時には永久に)反応がないのことも多いので、当日は即返です。

【円管内流れのReとNuの定義】 [1]
円管内部の平均流速を Um [m/s] としたとき、Re数は次式で定義されます。
   Re ≡ ρ*Um*D/μ
ρ は流体の密度 [kg/m^3]、μ は粘性係数 [kg/s/m = N・s/m^2]、D は円管の内径 [m] です。
一方、円管のNuは
   Nu ≡ h*D/k
で定義されます。h は熱伝達係数 [W/m^2/K] 、k は流体の熱伝導率 [W/m/K] です。層流の場合、発達流...続きを読む

Qエンベロープとは?

音声や音響の勉強をしていて、
「エンベロープが変化させると・・・、エンベロープを掛けると・・・」などという話を聞くのですが、その意味が良くわかりません。
エンベロープが振幅包絡ということはわかるのですが、
エンベロープが変化するとは、単純に振幅が変化するということなのでしょうか?
また、「エンベロープを掛ける」とはどういう意味なのでしょうか?

Aベストアンサー

>エンベロープが変化するとは、単純に振幅が変化するということなのでしょうか?
大まかに言えば、振幅の頂点の振幅が時間的に変化するということですね。その変化の波形(振幅包絡波形)が音声や音響の情報を運んでいます。AさんとBさんがほぼ同じ声の低さ(声帯の基本周波数が同じ)であっても「あいうえお」と発声した場合AさんとBさんの発声に聞こえ方の違い(個性)が出ます。これは振幅包絡波形の差から来るものです。時々刻々と変化する振幅変化に個性の差があるからです。音響でも音色や聞こえ方の差となって現れます。
AM放送などで使われているAM(振幅変調)方式と同じ原理で、AM方式では搬送波が音声の声帯の基本振動波に、AM放送の会話や音楽の信号波形がAM方式では、搬送波に信号波形に掛けられて(この操作を変調といいます。)、信号波形がAM信号の振幅包絡となって信号が運ばれます。可聴周波数の音声が声帯の基本周波数の波形にのせられて(振幅包絡となって)われわれの耳に個性のある音声として聞こえます。この音声情報が振幅包絡によって伝えられる訳です。声帯振動波に音声情報を、喉、鼻口腔や顎と頭蓋骨の形状、舌の形状を時間的変化させて、のせて(掛けて)いるわけですね。つまり、掛ける=変調する=ある信号波形を搬送波の振幅包絡にのせる、操作を意味しますね。

>エンベロープが変化するとは、単純に振幅が変化するということなのでしょうか?
大まかに言えば、振幅の頂点の振幅が時間的に変化するということですね。その変化の波形(振幅包絡波形)が音声や音響の情報を運んでいます。AさんとBさんがほぼ同じ声の低さ(声帯の基本周波数が同じ)であっても「あいうえお」と発声した場合AさんとBさんの発声に聞こえ方の違い(個性)が出ます。これは振幅包絡波形の差から来るものです。時々刻々と変化する振幅変化に個性の差があるからです。音響でも音色や聞こえ方の差と...続きを読む

Q真応力と真ひずみの定義(真応力は定義式)を教えてください。

真応力と真ひずみの定義(真応力は定義式)を教えてください。

あと、材料の応力-ひずみ線図において
塑性領域では真応力、真ひずみを使う理由も教えて欲しいです。

Aベストアンサー

試験片を引っ張ると引っ張る方向に延びるとともに、断面が縮みます。応力は荷重を断面積で割ったものであるとすればこの縮み分を考慮に入れようというのが真応力力、真ひずみの考え方です。塑性領域では断面の変化が大きくなるから真応力、真ひずみを用いる必要性が高くなります。

参考URL:http://www.eng.u-hyogo.ac.jp/msc/msc12/HIT/html/tests/stress-strain.html


人気Q&Aランキング