
No.2ベストアンサー
- 回答日時:
1/n^2も1/n^3も単調であることは簡単
有界であることは
1/n^2<1/((n-1)n)=1/(n-1)-1/n
1/n^3<1/((n-2)(n-1)n)=(1/2)(1/((n-2)(n-1))-1/((n-1)n))
を使って示せるだろう。
No.1
- 回答日時:
「有界単調数列が有限極限値を持つことを利用して」って書いてるんだから, これらが「単調数列」であるかどうかは判断できるよね?
で, もし「単調数列」だとしたらあとは「有界」であればいいわけだから, これらより大きくってかつ収束する数列をもってこいってことになる. がんばれ.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報