一様連続関数

の検索結果 (132件 1〜 20 件を表示)

関数の一様連続性について

…http://oshiete1.goo.ne.jp/qa3186700.html?ans_count_asc=0 上記を見てf(x)=1/(1+x^{2})のR上一様連続性について考えたのですが 上記の回答は間違っていると思います。x_{1}<x_{2}のときに両辺の平方が不等号を...…

解決

微分と積分の順序交換について

…φ(x)をR上有界な一様連続関数とします。 この場合 d/dx?(-∞~∞)φ(x) dx=?(-∞~∞)dxd/dxφ(x) dx とφの仮定からできるということなのですが、 なぜφの仮定から微分と積分の順序交換ができるので...…

締切

関数の連続性

…f(θ)を[0,2π]上の連続関数として、f(0)=f(2π)とします。 fは閉区間で連続なのでその区間で一様連続です。 このときfはR上の周期2πの連続関数になるように拡張できますよね。 つまりfは[θ,θ+...…

解決

連続率について

…独学で微分・積分を勉強しております。 連続関数の章にて、関数の一様連続性をより理解する為と云うことで、「連続率」の概念が出てきましたが、よく分かりません。 手持ちの書籍やネ...…

締切

fかgかのどちらか一方だけが非有界でもfgは一様連続?

…度々スイマセン。 [問]E⊂R:実数体,fとgはEでの一様連続な実数値関数とする。 fかgかのどちらか一方だけが非有界でもfgはEで一様連続と言えるか? [解] f:有界,g:非有界としてみると ∀x∈E,∃M...…

解決

解析の基本的な質問です。

…初歩的な質問で申し訳ありません。 以下の2点についてお答えいただければと思います。 (1)?A(x) B(x) dx (x in R) このときA(x)≦c(c:定数)で抑えられるならば 上記の積分を行う際にA(x)を積分の...…

締切

関数方程式f(x)=f(2x)の解き方が・・・

…閲覧ありがとうございます fはR上の連続関数とする、この時関数方程式 f(x)=f(2x) を解け。 この問題が分かりません。 どなたか教えてください。 よろしくお願いします。 お待ちしています...…

締切

少しでいいのでヒントをください!

…数学の講義のレポート課題でこんな問題が出たのですが意味がいまだによくわからないので少しだけヒントをください。 『開空間(0,1)で一様連続な関数は有界であることを示せ』 という問...…

解決

可算個の不連続点をもつ関数の多項式近似

…可算個の不連続点をもつ関数の多項式近似 閉区間における連続関数は多項式(無限の次数の可能性がありますが)で近似できるという「Weierstrassの近似定理」があります. そこで,閉区間におい...…

解決

位相と連続2

…http://oshiete.goo.ne.jp/qa/8225961.html にて、位相に関して質問をしたものです。 皆様からの回答を受けて、さらなる疑問が湧いたので、続けて質問をさせてください。 1) x = 0 でジャンプする関数...…

解決

微分と積分の順序交換

…熱方程式 Ut-Uxx=0 (t>0,x∈R) の基本解を (4πt)^(-1/2)・exp(-x^2/4t)=K(t,x)とおきます。 φ(x)をR上有界な一様連続な関数と仮定し、 U(t,x)=∫(R〜R)K(t,x-y)φ(y) dy (y∈R)とおきます。 このとき (∂/∂x) U(t...…

締切

一様連続の証明について

…疑問点を整理しての再質問です。 よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてです。 一様連続とは 「任意のε>0に対してδ...…

解決

一様連続の証明について

…度々すみません。 またお世話になります。 よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてです。 一様連続とは 「任意のε>0...…

解決

一様連続の証明について(改)

…同じ問題の質問を何度もすみません。 お蔭様でだんだん分かってきましたので、あともう少しだと思うので、 よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連...…

解決

一様連続の証明について

…お世話になります。 よろしくお願いします。 定理:『閉区間〔a,b〕で定義された連続関数は一様連続である。』 の証明についてなのですが、 以下のサイトの命題4、1を見てください。 http:...…

解決

連続関数空間上の有界線型汎関数の近似

…B={[0,T]→R;conti}を有限区間[0,T]上の実数値連続関数の全体として、一様ノルムを入れてバナッハ空間とみなします。 [0,T]の任意有限個の時刻t_1,…,t_nと任意の実数ξ_1,…,ξ_nを固定して、 B∋w...…

解決

一様○○の直感的な意味

…たとえば、複素平面上の部分集合Aとして A上の複素関数fとしたときに、 A上連続、と、A上一様連続、違うのですか? また、同じ設定のもとで複素関数列{f_n}n:1to∞として A上収束、と、A上一...…

解決

一様連続の証明問題です

…R上で定義された連続関数fが lim[x→+∞] f(x)=0 をみたすとする このときfは[0,∞) 上で 一様連続であることを証明せよ. ※証明にはε-δ論法を用いよ という問題なんですが まったく歯がたち...…

解決

L^1関数

…f∈L^1かつf∈C0(サポートコンパクトな連続関数)のとき、fが一様連続となる理由を教えてください。…

締切

位相数学の証明問題です。

…(1)R空間の部分集合で連結かつコンパクトなものは有界な閉区間に限ることを示してください。 (3)[a,b]上で定義された実数値連続関数f(x)に対して、正の実数δで次の※性質をもつものが存在す...…

解決

検索で見つからないときは質問してみよう!

Q質問する(無料)

おすすめ情報

Q&A検索履歴