
No.3ベストアンサー
- 回答日時:
oodaiko先生とだぶってしまったので補足します。
(私が書き始めたときは回答者数0だったもので・・・)
f '(x)=2x sin(1/x)-cos(1/x) がx=0で連続でないことを示します。
すなわち、
lim(x→0) f '(x) が存在しないことを示します。
「lim(x→0) f '(x) が存在するならば
0に収束する任意の数列An,Bnについて
lim(n→∞) f '(An)=lim(n→∞) f '(Bn)
が成り立つ。」
という定理があったことを思い出してください。
An=1/(2nπ)、Bn=1/(2nπ+π/2) としますと
lim(n→∞) f '(An)=lim(n→∞) {1/(nπ) sin(2nπ)-cos(2nπ)}
=lim(n→∞) (-1)=-1
lim(n→∞) f '(Bn)
=lim(n→∞) {2/(2nπ+π/2) sin(2nπ+π/2)-cos(2nπ+π/2)}
=lim(n→∞) (2/(2nπ+π/2))=0
よって、lim(n→∞) f '(An)≠lim(n→∞) f '(Bn)
「 」の定理の対偶を考えると、
lim(x→0) f '(x) が存在しない
ことが分かりますね。
ところでoodaiko先生に質問したいのですが。
>lim_{x→0} ( 2x sin (1/x) - cos (1/x))
>= lim_{x→0} 2x sin (1/x) - lim_{x→0} cos (1/x)
の部分です。
lim(f(x)+g(x))=lim f(x)+lim g(x)
が成り立つのは
lim f(x)、lim g(x)がそれぞれ存在するとき
ですよね。でもlim_{x→0} cos (1/x) は存在しない・・・
実は私が読んでいた本でもoodaiko先生のように証明しているんです。
何か特殊な事情でもあって、この場合は例外的に
lim(f(x)+g(x))=lim f(x)+lim g(x)
が成り立っているのでしょうか。
なるほど、振動しちゃう時はその一部のみの値を取る数列を考えればいいんですね。
いつもながら勉強になります。
ありがとうございました。
No.4
- 回答日時:
あちゃー。
又やっちゃいました。どうも急いで書くとろくなことがない。shushouさん<
>im(f(x)+g(x))=lim f(x)+lim g(x)
>が成り立つのは lim f(x)、lim g(x)
>がそれぞれ存在するときですよね。
おっしゃる通りです。
今の場合fに関してはlimが存在するが、gに関してはlimが存在しないのでしたから
lim (f(x)+g(x)) = lim f(x) + lim g(x)
などどは言えませんね。
そもそも極限が存在しないのならこの式は意味がない。
そこで極限が存在しないことを言うには
shushouさんのような方法で示すしかない。
shushouさんの読まれた本の筆者も私と同様の慌て者だと思います。
どうも失礼しました。m(_ _)m
なるほどねー。shushouさんがあれだけかけてlim(x→0) f '(x) が存在しないことを示されたのにはそう言う背景があったんですか。
> shushouさん
いつもの事ながら検算&理解に時間がかかりますのでご返事は今しばらくお待ち下さい。
No.2
- 回答日時:
代表的で(数学科の人には)有名な例を。
f(x)=x^2 sin(1/x) (xが0以外)
f(0)=0
とします。
するとf(x)は微分可能ですが、
f '(x)=2x sin(1/x)-cos(1/x)
は、x=0で連続ではなくなります。
No.1
- 回答日時:
それじゃ
f(x)=x^2 sin (1/x)
などいかがでしょうか。
|sin (1/x)|<1ですから
f(0)=0となることはよろしいですね。
またx≠0なら通常の方法で微分可能ですね。すなわち
f'(x)=2x sin (1/x) - cos (1/x)
となります。
x=0の時は微分の定義に戻って
f'(0) = lim_{x→0} ( f(x) - f(0))/ x = lim_{x→0} ( x^2 sin (1/x) )/ x
= lim_{x→0} x sin (1/x)=0
となります。すなわちfはすべての点で微分可能です。
しかし
lim_{x→0} f'(x)=lim_{x→0} ( 2x sin (1/x) - cos (1/x))
= lim_{x→0} 2x sin (1/x) - lim_{x→0} cos (1/x)
で、最後の式の第1項は0ですが第2項は不確定なのでf'(x)は0で不連続です。
(f'(x)が0で連続であると言うのはlim_{x→0} f'(x)=f'(0)となるということでしたね。)
> |sin (1/x)|<1ですから
> f(0)=0となることはよろしいですね。
1/x自体x≠0でしか定義できないので
f(x) = x^2 sin (1/x) (x≠0), f(0) = 0
と定義された関数と考えた方がいい気がしますが。
数学の世界ではいちいちそう言う七面倒くさい場合分けはしないんですか?
後は納得です。要は普通の関数じゃなく、ちみちみした所でぐちゃぐちゃした関数とか、
そういうまともじゃない関数じゃないとなかなかこれに当てはまる例はないという事ですね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
微小量とはいったいなんでしょ...
-
数学の f(f(x))とはどういう意...
-
微分について
-
大学の問題です。
-
マクローリンの定理の適用のし...
-
差分表現とは何でしょうか? 問...
-
ニュートン法について 初期値
-
【数3 式と曲線】 F(x、y)=0と...
-
左上図、左下図、右上図、右下...
-
「次の関数が全ての点で微分可...
-
f(x)=sin(x)/x って、とくにf(0...
-
"交わる"と"接する"の定義
-
∫[x=0~∞]logx/(1+x^2)の広義積...
-
関数方程式f(x)=f(2x)の解き方...
-
次の等式を満たす関数f(x)を求...
-
yとf(x)の違いについて
-
n次導関数
-
z^5=1の虚数解の一つをαと置く...
-
x<1の時、e^x <= 1/(1-x) であ...
おすすめ情報