f(x)=1/(1-x^2)のn次導関数を求めよ、という問題についてです。
f(x)=1/(1-x^2)=1/{(1+x)(1-x)}=1/2{1/(1+x)-1/(x-1)}
f'(x)=-1/2{1/(1+x)^2-1/(x-1)^2}
f''(x)=1/(1+x)^3-1/(x-1)^3
f'''(x)=-3{1/(1+x)^4-1/(x-1)^4}
以上の結果より、
f^n(x)=1/2*n!*(-1)^n*{1/(1+x)^(n+1)-1/(x-1)^(n+1)}
・・・以上のように解答しました。
結果はバツでした。どうすればよかったのでしょう?
No.1ベストアンサー
- 回答日時:
数学的帰納法を使えばよかったのではないですか?
単に微分をしていって,f^n(x)=1/2*n!*(-1)^n*{1/(1+x)^(n+1)-1/(x-1)^(n+1)}
でしたっていうのはダメだと思います.
No.2
- 回答日時:
No1様が言うように数学的帰納法をつかっておけば
○がもらえたでしょう。
もし、数学的帰納法が必要でないと思われるなら、
むしろこう書かないといけないのです。
f(x)=1/2{1/(1+x)-1/(x-1)}
ゆえに
f^n(x)=1/2*n!*(-1)^n*{1/(1+x)^(n+1)-1/(x-1)^(n+1)}
これで○がもらえるかどうかは先生しだいなのですが、
つまり途中の3行はあきらかに蛇足です。
たぶん、そのように記述しても丸はもらえなかったと思います。(丸をくれない先生なんです。笑)
f^n(x)=1/2*n!*(-1)^n*{1/(1+x)^(n+1)-1/(x-1)^(n+1)}
という式は合っているようなので、帰納法で証明します。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
それもChatGPT!?と驚いた使用方法を教えてください
仕事やプライベートでも利用が浸透してきたChatGPTですが、こんなときに使うの!!?とびっくりしたり、これは画期的な有効活用だ!とうなった事例があれば教えてください!
-
ちょっと先の未来クイズ第6問
2025年1月2日と1月3日に行われる、第101回箱根駅伝(東京箱根間往復大学駅伝競走)で、上位3位に入賞するチームはどこでしょう?
-
みんなの【マイ・ベスト積読2024】を教えてください。
積読、ついついしちゃいませんか?そこでみなさんの 「2024年に買ったベスト積読」を聞きたいです。
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
【お題】追い込まれた犯人が咄嗟に言った一言とは?
-
n次導関数
数学
-
テイラー展開 1/(1-x^3), 1/(1-x)^2
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・ことしの初夢、何だった?
- ・【お題】大変な警告
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
f(x) g(x) とは?
-
"交わる"と"接する"の定義
-
数学の f(f(x))とはどういう意...
-
lim(x→0)sinx/x について、ロピ...
-
微分可能ならば連続の証明につ...
-
差分表現とは何でしょうか? 問...
-
z^5=1の虚数解の一つをαと置く...
-
数学についてです。 任意の3次...
-
次の関数の増減を調べよ。 f(x)...
-
"~は…で抑えられる"を英語で言...
-
f(x)=sin(x)/x って、とくにf(0...
-
フーリエ変換できない式ってど...
-
微分可能なのに導関数が不連続?
-
二次関数 必ず通る点について
-
2次関数の最大最小
-
高校数学です。y=|x|+1 は奇...
-
フーリエ級数について
-
ニュートン法について 初期値
-
次の等式を満たす関数f(x)を求...
-
左上図、左下図、右上図、右下...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
"交わる"と"接する"の定義
-
微小量とはいったいなんでしょ...
-
二次関数 必ず通る点について
-
数学の f(f(x))とはどういう意...
-
次の関数の増減を調べよ。 f(x)...
-
ニュートン法について 初期値
-
次の等式を満たす関数f(x)を求...
-
どんな式でも偶関数か奇関数の...
-
左上図、左下図、右上図、右下...
-
フーリエ級数について
-
数学の記法について。 Wikipedi...
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
微分について
-
大学の問題です。
-
大学数学 解析学 区間[a,b]で...
-
∫[x=0~∞]logx/(1+x^2)の広義積...
-
yとf(x)の違いについて
-
数I 2次不等式x²+2x+m(m-4)≧0が...
-
差分表現とは何でしょうか? 問...
おすすめ情報