No.1ベストアンサー
- 回答日時:
三次方程式f(x) がある複素数解αを持つとすると、その共役複素数~αもf(x)の解になることを示す。
f(α) = aα^3 + bα^2 + cα + d = 0
f(~α) = a(~α)^3 + b(~α)^2 + c(~α) + d
=a(~α^3) + b(~α^2) + c(~α) + d
=~aα^3 + ~bα^2 + ~cα + d
=~(aα^3 + bα^2 + cα + d)
=0
ここである三次方程式について実数解をもたないと仮定すると、
複素数とその共役複素数が解となることに矛盾する。
よって少なくとも一つは実数解となる。
No.6
- 回答日時:
あああ... No.5 は、とんでもない。
f(x)f(-x) は6次多項式で、しかも6次の係数が負( f(x)の3次の係数を a とすると -a^2 )ですから、
lim[x→+∞]f(x)f(-x) = -∞ です。
よって、十分大きい正数 R をとると f(R)f(-R) < 0 とできます。
f(R) と f(-R) が異符号で、
No.5
- 回答日時:
No.1がとても美しいが、あえて代数学の基本定理は使わない証明を書いてみます。
中間値定理の成立条件に注意しましょう。
実係数3次多項式 f(x) について、方程式 f(x)=0 を考えます。
f(x)f(-x) は6次多項式で、しかも6次の係数が正( f(x)の3次の係数の2乗 )ですから、
lim[x→+∞]f(x)f(-x) = +∞ です。
よって、十分大きい正数 R をとると f(R)f(-R) > 0 とできます。
f(R) と f(-R) が異符号で、f(x) は -R≦x≦R で連続ですから、
中間値定理より、-R<x<R の範囲に f(x)=0 となる x が存在します。
No.2
- 回答日時:
最後かなり端折ってますが、
簡単に言えば実数係数の多項式が複素数解をもつならば、複素数の解は偶数個でなければならないという事です。(複素数とその共役複素数がセットになるので)
このことから実数係数のn次方程式でnが奇数なら少なくとも一つの実数解をもつこともわかります
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 xの2次方程式x2+5x-2m+1=0が異なる二つの実数解をもつような定数mの範囲を求めたいです。 2 2022/05/27 22:05
- 数学 xの2次方程式4x2+(k-1)x+1=0がただ1つの実数解をもつような、定数kの値を求めたいです。 5 2022/05/27 22:14
- 数学 高校数学I 2次関数 2つの2次方程式の共通の実数解の問題についての質問です。以下の写真を見てもらえ 4 2022/05/13 11:47
- 数学 上三角行列のn乗の証明 2 2023/07/23 21:45
- 大学受験 ある大学の数1Aの問題なのですが、回答に解説がなく 困ってます。誰か解説をつけて欲しいです 2つのx 3 2022/11/11 22:50
- 大学受験 ある大学の数1,Aの過去問なのですが回答に解説がなく困っています。誰か解説をつけて欲しいです(><) 1 2022/11/05 12:57
- 数学 高2 数2 3 2022/06/20 21:39
- 日本語 より大きな 5 2022/09/29 08:00
- 数学 原始関数の存在性の証明について 数学科の3回生です。院試の勉強でつまづいたので助けてほしいです。 R 6 2022/11/13 19:19
- 数学 2次方程式の「(x-3)^2=4」を解くとき、 そのまま解くことも可能ですが A=x-3と置いて、A 3 2023/01/27 18:20
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
差分表現とは何でしょうか? 問...
-
f(x) g(x) とは?
-
マクローリン展開
-
"交わる"と"接する"の定義
-
次の等式を満たす関数f(x)を求...
-
ニュートン法について 初期値
-
微分について
-
不足和の求め方について
-
f(0)とf(0+)の違い。(+は上付き...
-
f(x)=x√(2x-x^2)が与えられて...
-
【大至急!!!】数学的帰納法...
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
関数 f(x) = e^(2x) につい...
-
数学の f(f(x))とはどういう意...
-
次の関数の増減を調べよ。 f(x)...
-
数学 定積分の問題です。 関数f...
-
ランダウの記号のスモール・オ...
-
二次関数 必ず通る点について
-
極限、不連続
-
掛け算も足し算も同じ値
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
数学の f(f(x))とはどういう意...
-
差分表現とは何でしょうか? 問...
-
"交わる"と"接する"の定義
-
次の関数の増減を調べよ。 f(x)...
-
三次関数が三重解を持つ条件とは?
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
次の等式を満たす関数f(x)を求...
-
微小量とはいったいなんでしょ...
-
二次関数 必ず通る点について
-
微分について
-
左上図、左下図、右上図、右下...
-
数学II 積分
-
どんな式でも偶関数か奇関数の...
-
数学 定積分の問題です。 関数f...
-
フーリエ変換できない式ってど...
-
数学についてです。 任意の3次...
-
大学の問題です。
-
Gnuplotについて エラーメッセ...
おすすめ情報